S. D. Nurherdiana, T. Gunawan, N. Widiastuti, H. Fansuri
{"title":"钙钛矿和金属氧化物基膜的重大挑战:一种双层中空纤维","authors":"S. D. Nurherdiana, T. Gunawan, N. Widiastuti, H. Fansuri","doi":"10.11113/amst.v25n3.217","DOIUrl":null,"url":null,"abstract":"Perovskite and metal oxides-based dual-layer hollow fibre membrane (DHF) has a high appeal as separator and catalyst for methane conversion application which operated at intermediate and high temperature. The membrane mostly fabricated via the co-extrusion followed by co-sintering method, which is quite challenging, due to the complexity to handle the barrier between layers from delamination, membrane cracking and crystal structure distortion which affects the material performance in a DHF form. This recent review clarifies the challenges in the DHF fabrication process to regulate physical and chemical properties in terms of mechanical strength, tightness, elemental distribution, and crystal structure stability. The based material of the membrane focuses on NiO-YSZ in the inner layer directly interconnected with LSCF-YSZ in the outer layer. The understanding of the challenges in DHF fabrication, will further reduce crucial errors in the fabrication process and accelerate performance improvement for application such as syngas, methanol and long-chain hydrocarbons production, and solid oxide fuel cell.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Grand Challenges of Perovskite and Metal Oxide-based Membrane: A Form of Dual-layer Hollow Fibre\",\"authors\":\"S. D. Nurherdiana, T. Gunawan, N. Widiastuti, H. Fansuri\",\"doi\":\"10.11113/amst.v25n3.217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite and metal oxides-based dual-layer hollow fibre membrane (DHF) has a high appeal as separator and catalyst for methane conversion application which operated at intermediate and high temperature. The membrane mostly fabricated via the co-extrusion followed by co-sintering method, which is quite challenging, due to the complexity to handle the barrier between layers from delamination, membrane cracking and crystal structure distortion which affects the material performance in a DHF form. This recent review clarifies the challenges in the DHF fabrication process to regulate physical and chemical properties in terms of mechanical strength, tightness, elemental distribution, and crystal structure stability. The based material of the membrane focuses on NiO-YSZ in the inner layer directly interconnected with LSCF-YSZ in the outer layer. The understanding of the challenges in DHF fabrication, will further reduce crucial errors in the fabrication process and accelerate performance improvement for application such as syngas, methanol and long-chain hydrocarbons production, and solid oxide fuel cell.\",\"PeriodicalId\":326334,\"journal\":{\"name\":\"Journal of Applied Membrane Science & Technology\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Membrane Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/amst.v25n3.217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Membrane Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/amst.v25n3.217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Grand Challenges of Perovskite and Metal Oxide-based Membrane: A Form of Dual-layer Hollow Fibre
Perovskite and metal oxides-based dual-layer hollow fibre membrane (DHF) has a high appeal as separator and catalyst for methane conversion application which operated at intermediate and high temperature. The membrane mostly fabricated via the co-extrusion followed by co-sintering method, which is quite challenging, due to the complexity to handle the barrier between layers from delamination, membrane cracking and crystal structure distortion which affects the material performance in a DHF form. This recent review clarifies the challenges in the DHF fabrication process to regulate physical and chemical properties in terms of mechanical strength, tightness, elemental distribution, and crystal structure stability. The based material of the membrane focuses on NiO-YSZ in the inner layer directly interconnected with LSCF-YSZ in the outer layer. The understanding of the challenges in DHF fabrication, will further reduce crucial errors in the fabrication process and accelerate performance improvement for application such as syngas, methanol and long-chain hydrocarbons production, and solid oxide fuel cell.