虚拟机监视器的并发直接网络访问

Jeffrey Shafer, D. Carr, Aravind Menon, S. Rixner, A. Cox, W. Zwaenepoel, Paul Willmann
{"title":"虚拟机监视器的并发直接网络访问","authors":"Jeffrey Shafer, D. Carr, Aravind Menon, S. Rixner, A. Cox, W. Zwaenepoel, Paul Willmann","doi":"10.1109/HPCA.2007.346208","DOIUrl":null,"url":null,"abstract":"This paper presents hardware and software mechanisms to enable concurrent direct network access (CDNA) by operating systems running within a virtual machine monitor. In a conventional virtual machine monitor, each operating system running within a virtual machine must access the network through a software-virtualized network interface. These virtual network interfaces are multiplexed in software onto a physical network interface, incurring significant performance overheads. The CDNA architecture improves networking efficiency and performance by dividing the tasks of traffic multiplexing, interrupt delivery, and memory protection between hardware and software in a novel way. The virtual machine monitor delivers interrupts and provides protection between virtual machines, while the network interface performs multiplexing of the network data. In effect, the CDNA architecture provides the abstraction that each virtual machine is connected directly to its own network interface. Through the use of CDNA, many of the bottlenecks imposed by software multiplexing can be eliminated without sacrificing protection, producing substantial efficiency improvements","PeriodicalId":177324,"journal":{"name":"2007 IEEE 13th International Symposium on High Performance Computer Architecture","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":"{\"title\":\"Concurrent Direct Network Access for Virtual Machine Monitors\",\"authors\":\"Jeffrey Shafer, D. Carr, Aravind Menon, S. Rixner, A. Cox, W. Zwaenepoel, Paul Willmann\",\"doi\":\"10.1109/HPCA.2007.346208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents hardware and software mechanisms to enable concurrent direct network access (CDNA) by operating systems running within a virtual machine monitor. In a conventional virtual machine monitor, each operating system running within a virtual machine must access the network through a software-virtualized network interface. These virtual network interfaces are multiplexed in software onto a physical network interface, incurring significant performance overheads. The CDNA architecture improves networking efficiency and performance by dividing the tasks of traffic multiplexing, interrupt delivery, and memory protection between hardware and software in a novel way. The virtual machine monitor delivers interrupts and provides protection between virtual machines, while the network interface performs multiplexing of the network data. In effect, the CDNA architecture provides the abstraction that each virtual machine is connected directly to its own network interface. Through the use of CDNA, many of the bottlenecks imposed by software multiplexing can be eliminated without sacrificing protection, producing substantial efficiency improvements\",\"PeriodicalId\":177324,\"journal\":{\"name\":\"2007 IEEE 13th International Symposium on High Performance Computer Architecture\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"165\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 13th International Symposium on High Performance Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2007.346208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 13th International Symposium on High Performance Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2007.346208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 165

摘要

本文介绍了在虚拟机监视器内运行的操作系统实现并发直接网络访问(CDNA)的硬件和软件机制。在传统的虚拟机监视器中,在虚拟机中运行的每个操作系统必须通过软件虚拟化的网络接口访问网络。这些虚拟网络接口在软件中被多路复用到物理网络接口上,从而导致显著的性能开销。CDNA架构通过在硬件和软件之间划分流量复用、中断传递和内存保护等任务,提高了网络效率和性能。当网络接口执行网络数据的多路复用时,虚拟机监视器提供中断并在虚拟机之间提供保护。实际上,CDNA架构提供了一种抽象,即每个虚拟机都直接连接到自己的网络接口。通过使用CDNA,可以在不牺牲保护的情况下消除软件多路复用带来的许多瓶颈,从而大大提高效率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Concurrent Direct Network Access for Virtual Machine Monitors
This paper presents hardware and software mechanisms to enable concurrent direct network access (CDNA) by operating systems running within a virtual machine monitor. In a conventional virtual machine monitor, each operating system running within a virtual machine must access the network through a software-virtualized network interface. These virtual network interfaces are multiplexed in software onto a physical network interface, incurring significant performance overheads. The CDNA architecture improves networking efficiency and performance by dividing the tasks of traffic multiplexing, interrupt delivery, and memory protection between hardware and software in a novel way. The virtual machine monitor delivers interrupts and provides protection between virtual machines, while the network interface performs multiplexing of the network data. In effect, the CDNA architecture provides the abstraction that each virtual machine is connected directly to its own network interface. Through the use of CDNA, many of the bottlenecks imposed by software multiplexing can be eliminated without sacrificing protection, producing substantial efficiency improvements
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Researching Novel Systems: To Instantiate, Emulate, Simulate, or Analyticate? Feedback Directed Prefetching: Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers Optical Interconnect Opportunities for Future Server Memory Systems Thermal Herding: Microarchitecture Techniques for Controlling Hotspots in High-Performance 3D-Integrated Processors Extending Multicore Architectures to Exploit Hybrid Parallelism in Single-thread Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1