{"title":"中心模式发生器:从无脊椎动物模型系统中学到的一些原理。","authors":"K Lukowiak","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>1. Central pattern generators (CPGs) underlie a wide variety of rhythmic behaviours such as locomotion and respiration in most multi-cellular organisms. 2. The CPG's are capable of generating a patterned output without phasic sensory input. 3. The organization of the CPG is due to both intrinsic properties of the individual neurons and their network interactions. 4. To gain an understanding of the mechanisms which underlie rhythmicity a CPG has been reconstructed in culture. This will allow investigators to test directly the mechanisms underlying the generation of rhythmic output and will allow the direct testing of the mechanisms by which various modulators affect the CPG.</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"85 2","pages":"63-70"},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Central pattern generators: some principles learned from invertebrate model systems.\",\"authors\":\"K Lukowiak\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1. Central pattern generators (CPGs) underlie a wide variety of rhythmic behaviours such as locomotion and respiration in most multi-cellular organisms. 2. The CPG's are capable of generating a patterned output without phasic sensory input. 3. The organization of the CPG is due to both intrinsic properties of the individual neurons and their network interactions. 4. To gain an understanding of the mechanisms which underlie rhythmicity a CPG has been reconstructed in culture. This will allow investigators to test directly the mechanisms underlying the generation of rhythmic output and will allow the direct testing of the mechanisms by which various modulators affect the CPG.</p>\",\"PeriodicalId\":14735,\"journal\":{\"name\":\"Journal de physiologie\",\"volume\":\"85 2\",\"pages\":\"63-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de physiologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de physiologie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Central pattern generators: some principles learned from invertebrate model systems.
1. Central pattern generators (CPGs) underlie a wide variety of rhythmic behaviours such as locomotion and respiration in most multi-cellular organisms. 2. The CPG's are capable of generating a patterned output without phasic sensory input. 3. The organization of the CPG is due to both intrinsic properties of the individual neurons and their network interactions. 4. To gain an understanding of the mechanisms which underlie rhythmicity a CPG has been reconstructed in culture. This will allow investigators to test directly the mechanisms underlying the generation of rhythmic output and will allow the direct testing of the mechanisms by which various modulators affect the CPG.