利用贝叶斯高斯过程优化方法从pp、pA和AA大能量范围碰撞数据中确定夸克-胶子弦参数

V. Kovalenko
{"title":"利用贝叶斯高斯过程优化方法从pp、pA和AA大能量范围碰撞数据中确定夸克-胶子弦参数","authors":"V. Kovalenko","doi":"10.22323/1.336.0235","DOIUrl":null,"url":null,"abstract":"Bayesian Gaussian Process Optimization can be considered as a method of the determination of the model parameters, based on the experimental data. In the range of soft QCD physics, the processes of hadron and nuclear interactions require using phenomenological models containing many parameters. In order to minimize the computation time, the model predictions can be parameterized using Gaussian Process regression, and then provide the input to the Bayesian Optimization. In this paper, the Bayesian Gaussian Process Optimization has been applied to the Monte Carlo model with string fusion. The parameters of the model are determined using experimental data on multiplicity and cross section of pp, pA and AA collisions at wide energy range. The results provide important constraints on the transverse radius of the quark-gluon string ($r_{str}$) and the mean multiplicity per rapidity from one string ($\\mu_0$).","PeriodicalId":441384,"journal":{"name":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Determination of the quark-gluon string parameters from the data on pp, pA and AA collisions at wide energy range using Bayesian Gaussian Process Optimization\",\"authors\":\"V. Kovalenko\",\"doi\":\"10.22323/1.336.0235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian Gaussian Process Optimization can be considered as a method of the determination of the model parameters, based on the experimental data. In the range of soft QCD physics, the processes of hadron and nuclear interactions require using phenomenological models containing many parameters. In order to minimize the computation time, the model predictions can be parameterized using Gaussian Process regression, and then provide the input to the Bayesian Optimization. In this paper, the Bayesian Gaussian Process Optimization has been applied to the Monte Carlo model with string fusion. The parameters of the model are determined using experimental data on multiplicity and cross section of pp, pA and AA collisions at wide energy range. The results provide important constraints on the transverse radius of the quark-gluon string ($r_{str}$) and the mean multiplicity per rapidity from one string ($\\\\mu_0$).\",\"PeriodicalId\":441384,\"journal\":{\"name\":\"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.336.0235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.336.0235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

贝叶斯高斯过程优化可以看作是一种基于实验数据确定模型参数的方法。在软量子光盘物理的范围内,强子和核相互作用的过程需要使用包含许多参数的现象学模型。为了减少计算时间,可以使用高斯过程回归将模型预测参数化,然后为贝叶斯优化提供输入。本文将贝叶斯高斯过程优化方法应用于具有串融合的蒙特卡罗模型。利用pp、pA和AA在宽能量范围内碰撞的多重性和横截面实验数据确定了模型参数。这些结果为夸克-胶子弦($r_{str}$)的横向半径和单弦($\mu_0$)的平均每速度多重性提供了重要的约束条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of the quark-gluon string parameters from the data on pp, pA and AA collisions at wide energy range using Bayesian Gaussian Process Optimization
Bayesian Gaussian Process Optimization can be considered as a method of the determination of the model parameters, based on the experimental data. In the range of soft QCD physics, the processes of hadron and nuclear interactions require using phenomenological models containing many parameters. In order to minimize the computation time, the model predictions can be parameterized using Gaussian Process regression, and then provide the input to the Bayesian Optimization. In this paper, the Bayesian Gaussian Process Optimization has been applied to the Monte Carlo model with string fusion. The parameters of the model are determined using experimental data on multiplicity and cross section of pp, pA and AA collisions at wide energy range. The results provide important constraints on the transverse radius of the quark-gluon string ($r_{str}$) and the mean multiplicity per rapidity from one string ($\mu_0$).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractal structure, power-law distribution and hadron spectrum A Model for Soft and Hard Interactions based on the CGC/Saturation Approach Proper time evolution of magnetic susceptibility in amagnetized plasma of quarks and gluons Transport in Dense Nuclear Matter Higher-order condensate corrections to bottomonium observables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1