压阻式MEMS压力传感器的激光信号注入攻击

Tatsuki Tanaka, T. Sugawara
{"title":"压阻式MEMS压力传感器的激光信号注入攻击","authors":"Tatsuki Tanaka, T. Sugawara","doi":"10.1109/SENSORS52175.2022.9967044","DOIUrl":null,"url":null,"abstract":"As more and more information systems rely sen-sors for their critical decisions, there is a growing threat of injecting false signals to sensors in the analog domain. In particular, LightCommands showed that MEMS microphones are susceptible to light, through the photoacoustic and photoelectric effects, enabling an attacker to silently inject voice commands to smart speakers. Understanding such unexpected transduction mechanisms is essential for designing secure and reliable MEMS sensors. Is there any other transduction mechanism enabling laser-induced attacks? We positively answer the question by experimentally evaluating two commercial piezoresistive MEMS pressure sensors. By shining a laser light at the piezoresistors through an air hole on the sensor package, the pressure reading changes by ±1000 hPa with 0.5 mW laser power. This phenomenon can be explained by the photoelectric effect at the piezoresistors, which increases the number of carriers and decreases the resistance. We finally show that an attacker can induce the target signal at the sensor reading by shining an amplitude-modulated laser light.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Laser-Based Signal-Injection Attack on Piezoresistive MEMS Pressure Sensors\",\"authors\":\"Tatsuki Tanaka, T. Sugawara\",\"doi\":\"10.1109/SENSORS52175.2022.9967044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As more and more information systems rely sen-sors for their critical decisions, there is a growing threat of injecting false signals to sensors in the analog domain. In particular, LightCommands showed that MEMS microphones are susceptible to light, through the photoacoustic and photoelectric effects, enabling an attacker to silently inject voice commands to smart speakers. Understanding such unexpected transduction mechanisms is essential for designing secure and reliable MEMS sensors. Is there any other transduction mechanism enabling laser-induced attacks? We positively answer the question by experimentally evaluating two commercial piezoresistive MEMS pressure sensors. By shining a laser light at the piezoresistors through an air hole on the sensor package, the pressure reading changes by ±1000 hPa with 0.5 mW laser power. This phenomenon can be explained by the photoelectric effect at the piezoresistors, which increases the number of carriers and decreases the resistance. We finally show that an attacker can induce the target signal at the sensor reading by shining an amplitude-modulated laser light.\",\"PeriodicalId\":120357,\"journal\":{\"name\":\"2022 IEEE Sensors\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS52175.2022.9967044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着越来越多的信息系统依赖于传感器进行关键决策,模拟域的传感器被注入假信号的威胁也越来越大。LightCommands特别表明,MEMS麦克风易受光的影响,通过光声和光电效应,使攻击者能够无声地向智能扬声器注入语音命令。了解这种意想不到的转导机制对于设计安全可靠的MEMS传感器至关重要。是否有其他的传导机制使激光诱发攻击?我们通过实验评估两个商用压阻式MEMS压力传感器来积极回答这个问题。激光通过传感器封装上的气孔照射压敏电阻,当激光功率为0.5 mW时,压力读数变化±1000 hPa。这种现象可以用压敏电阻处的光电效应来解释,它增加了载流子的数量,降低了电阻。我们最后表明,攻击者可以通过照射调幅激光在传感器读数处诱导目标信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser-Based Signal-Injection Attack on Piezoresistive MEMS Pressure Sensors
As more and more information systems rely sen-sors for their critical decisions, there is a growing threat of injecting false signals to sensors in the analog domain. In particular, LightCommands showed that MEMS microphones are susceptible to light, through the photoacoustic and photoelectric effects, enabling an attacker to silently inject voice commands to smart speakers. Understanding such unexpected transduction mechanisms is essential for designing secure and reliable MEMS sensors. Is there any other transduction mechanism enabling laser-induced attacks? We positively answer the question by experimentally evaluating two commercial piezoresistive MEMS pressure sensors. By shining a laser light at the piezoresistors through an air hole on the sensor package, the pressure reading changes by ±1000 hPa with 0.5 mW laser power. This phenomenon can be explained by the photoelectric effect at the piezoresistors, which increases the number of carriers and decreases the resistance. We finally show that an attacker can induce the target signal at the sensor reading by shining an amplitude-modulated laser light.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-intrusive Water Flow Rate Measurement: A TEG-powered Ultrasonic Sensing Approach Design of optical inclinometer composed of a ball lens and viscosity fluid to improve focusing Fall Event Detection using Vision Transformer Porous Silicon-Based Microspectral Unit for Real-Time Moisture Detection in a Battery-less Smart Mask Twisted and Coiled Carbon Nanotube Yarn Muscle Embedding Ferritin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1