用盆景模糊法培养测试语料库

Vasudev Vikram, Rohan Padhye, Koushik Sen
{"title":"用盆景模糊法培养测试语料库","authors":"Vasudev Vikram, Rohan Padhye, Koushik Sen","doi":"10.1109/ICSE43902.2021.00072","DOIUrl":null,"url":null,"abstract":"This paper presents a coverage-guided grammar-based fuzzing technique for automatically synthesizing a corpus of concise test inputs. We walk-through a case study of a compiler designed for education and the corresponding problem of generating meaningful test cases to provide to students. The prior state-of-the-art solution is a combination of fuzzing and test-case reduction techniques such as variants of delta-debugging. Our key insight is that instead of attempting to minimize convoluted fuzzer-generated test inputs, we can instead grow concise test inputs by construction using a form of iterative deepening. We call this approach bonsai fuzzing. Experimental results show that bonsai fuzzing can generate test corpora having inputs that are 16–45% smaller in size on average as compared to a fuzz-then-reduce approach, while achieving approximately the same code coverage and fault-detection capability.","PeriodicalId":305167,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Growing a Test Corpus with Bonsai Fuzzing\",\"authors\":\"Vasudev Vikram, Rohan Padhye, Koushik Sen\",\"doi\":\"10.1109/ICSE43902.2021.00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a coverage-guided grammar-based fuzzing technique for automatically synthesizing a corpus of concise test inputs. We walk-through a case study of a compiler designed for education and the corresponding problem of generating meaningful test cases to provide to students. The prior state-of-the-art solution is a combination of fuzzing and test-case reduction techniques such as variants of delta-debugging. Our key insight is that instead of attempting to minimize convoluted fuzzer-generated test inputs, we can instead grow concise test inputs by construction using a form of iterative deepening. We call this approach bonsai fuzzing. Experimental results show that bonsai fuzzing can generate test corpora having inputs that are 16–45% smaller in size on average as compared to a fuzz-then-reduce approach, while achieving approximately the same code coverage and fault-detection capability.\",\"PeriodicalId\":305167,\"journal\":{\"name\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE43902.2021.00072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE43902.2021.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种基于覆盖引导语法的模糊测试技术,用于自动合成简洁测试输入的语料库。我们通过一个为教育设计的编译器的案例研究,以及生成提供给学生的有意义的测试用例的相应问题。先前最先进的解决方案是模糊测试和测试用例减少技术(如增量调试的变体)的组合。我们的关键见解是,我们可以通过使用迭代深化的形式来构建简洁的测试输入,而不是试图最小化复杂的模糊器生成的测试输入。我们称这种方法为盆景模糊。实验结果表明,盆景模糊可以生成的测试语料库的输入比模糊-然后减少的方法平均小16-45%,同时实现大致相同的代码覆盖率和故障检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Growing a Test Corpus with Bonsai Fuzzing
This paper presents a coverage-guided grammar-based fuzzing technique for automatically synthesizing a corpus of concise test inputs. We walk-through a case study of a compiler designed for education and the corresponding problem of generating meaningful test cases to provide to students. The prior state-of-the-art solution is a combination of fuzzing and test-case reduction techniques such as variants of delta-debugging. Our key insight is that instead of attempting to minimize convoluted fuzzer-generated test inputs, we can instead grow concise test inputs by construction using a form of iterative deepening. We call this approach bonsai fuzzing. Experimental results show that bonsai fuzzing can generate test corpora having inputs that are 16–45% smaller in size on average as compared to a fuzz-then-reduce approach, while achieving approximately the same code coverage and fault-detection capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MuDelta: Delta-Oriented Mutation Testing at Commit Time Verifying Determinism in Sequential Programs Data-Oriented Differential Testing of Object-Relational Mapping Systems IoT Bugs and Development Challenges Onboarding vs. Diversity, Productivity and Quality — Empirical Study of the OpenStack Ecosystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1