Vasileios Spiliopoulos, Akash Bagdia, Andreas Hansson, P. Aldworth, S. Kaxiras
{"title":"介绍全系统模拟器中的dvfs管理","authors":"Vasileios Spiliopoulos, Akash Bagdia, Andreas Hansson, P. Aldworth, S. Kaxiras","doi":"10.1109/MASCOTS.2013.75","DOIUrl":null,"url":null,"abstract":"Dynamic Voltage and Frequency Scaling (DVFS) is an essential part of controlling the power consumption of any computer system, ranging from mobile phones to servers. DVFS efficiency relies on hardware-software co-optimization, thus using existing hardware cannot reveal the full optimization potential beyond the current implementation's characteristics. To explore the vast design space for DVFS efficiency, that straddles software and hardware, a simulation infrastructure must provide features that are not readily available today, for example: software controllable clock and voltage domains, support for the OS and the frequency scaling module of it, and an online power estimation methodology. As the main contribution, this work enables DVFS studies in a full-system simulator. We extend the gem5 simulator to support full-system DVFS modeling. By doing so, we enable energy-efficiency experiments to be performed in gem5 and we showcase such studies. Finally, we show that both existing and novel frequency governors for Linux and Android can be effortlessly integrated in the framework, and we evaluate the efficiency of different DVFS schemes.","PeriodicalId":385538,"journal":{"name":"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Introducing DVFS-Management in a Full-System Simulator\",\"authors\":\"Vasileios Spiliopoulos, Akash Bagdia, Andreas Hansson, P. Aldworth, S. Kaxiras\",\"doi\":\"10.1109/MASCOTS.2013.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic Voltage and Frequency Scaling (DVFS) is an essential part of controlling the power consumption of any computer system, ranging from mobile phones to servers. DVFS efficiency relies on hardware-software co-optimization, thus using existing hardware cannot reveal the full optimization potential beyond the current implementation's characteristics. To explore the vast design space for DVFS efficiency, that straddles software and hardware, a simulation infrastructure must provide features that are not readily available today, for example: software controllable clock and voltage domains, support for the OS and the frequency scaling module of it, and an online power estimation methodology. As the main contribution, this work enables DVFS studies in a full-system simulator. We extend the gem5 simulator to support full-system DVFS modeling. By doing so, we enable energy-efficiency experiments to be performed in gem5 and we showcase such studies. Finally, we show that both existing and novel frequency governors for Linux and Android can be effortlessly integrated in the framework, and we evaluate the efficiency of different DVFS schemes.\",\"PeriodicalId\":385538,\"journal\":{\"name\":\"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOTS.2013.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOTS.2013.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Introducing DVFS-Management in a Full-System Simulator
Dynamic Voltage and Frequency Scaling (DVFS) is an essential part of controlling the power consumption of any computer system, ranging from mobile phones to servers. DVFS efficiency relies on hardware-software co-optimization, thus using existing hardware cannot reveal the full optimization potential beyond the current implementation's characteristics. To explore the vast design space for DVFS efficiency, that straddles software and hardware, a simulation infrastructure must provide features that are not readily available today, for example: software controllable clock and voltage domains, support for the OS and the frequency scaling module of it, and an online power estimation methodology. As the main contribution, this work enables DVFS studies in a full-system simulator. We extend the gem5 simulator to support full-system DVFS modeling. By doing so, we enable energy-efficiency experiments to be performed in gem5 and we showcase such studies. Finally, we show that both existing and novel frequency governors for Linux and Android can be effortlessly integrated in the framework, and we evaluate the efficiency of different DVFS schemes.