无人机系统的高效人工智能框架

Enkhtogtokh Togootogtokh, Sunan Huang, W. L. Leong, Rodney Teo Swee Huat, G. Foresti, C. Micheloni, Niki Maritnel
{"title":"无人机系统的高效人工智能框架","authors":"Enkhtogtokh Togootogtokh, Sunan Huang, W. L. Leong, Rodney Teo Swee Huat, G. Foresti, C. Micheloni, Niki Maritnel","doi":"10.1109/Ubi-Media.2019.00018","DOIUrl":null,"url":null,"abstract":"The recent breakthrough of artificial intelligence (AI) in many fields has recently shown its impact on drone technology as well. However, most of the provided solutions either entirely rely on commercial software or provide a weak integration interface which denies the development of additional techniques. This leads us to propose a novel and efficient frame-work for the drone technology. Specifically, we introduce the multi-layer AI (MLAI) framework which allows easy integration of ad-hoc AI applications. To demonstrate the benefits of the proposed framework, we implemented deep learning models to track and detect objects based on MLAI.","PeriodicalId":259542,"journal":{"name":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Artificial Intelligence Framework for UAV Systems\",\"authors\":\"Enkhtogtokh Togootogtokh, Sunan Huang, W. L. Leong, Rodney Teo Swee Huat, G. Foresti, C. Micheloni, Niki Maritnel\",\"doi\":\"10.1109/Ubi-Media.2019.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent breakthrough of artificial intelligence (AI) in many fields has recently shown its impact on drone technology as well. However, most of the provided solutions either entirely rely on commercial software or provide a weak integration interface which denies the development of additional techniques. This leads us to propose a novel and efficient frame-work for the drone technology. Specifically, we introduce the multi-layer AI (MLAI) framework which allows easy integration of ad-hoc AI applications. To demonstrate the benefits of the proposed framework, we implemented deep learning models to track and detect objects based on MLAI.\",\"PeriodicalId\":259542,\"journal\":{\"name\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Ubi-Media.2019.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Ubi-Media.2019.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近,人工智能(AI)在许多领域的突破也对无人机技术产生了影响。然而,大多数提供的解决方案要么完全依赖于商业软件,要么提供一个弱集成接口,从而拒绝开发其他技术。这使我们提出了一种新颖而高效的无人机技术框架。具体来说,我们引入了多层人工智能(MLAI)框架,该框架允许轻松集成自组织人工智能应用程序。为了证明所提出的框架的好处,我们实现了基于MLAI的深度学习模型来跟踪和检测对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Artificial Intelligence Framework for UAV Systems
The recent breakthrough of artificial intelligence (AI) in many fields has recently shown its impact on drone technology as well. However, most of the provided solutions either entirely rely on commercial software or provide a weak integration interface which denies the development of additional techniques. This leads us to propose a novel and efficient frame-work for the drone technology. Specifically, we introduce the multi-layer AI (MLAI) framework which allows easy integration of ad-hoc AI applications. To demonstrate the benefits of the proposed framework, we implemented deep learning models to track and detect objects based on MLAI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Target-Monitoring Learning Companion Design DeepBonds: A Deep Learning Approach to Predicting United States Treasury Yield Clinically Applicable Deep Learning for Diagnosis of Diabetic Retinopathy Markerless Indoor/Outdoor Augmented Reality Navigation Device Based on ORB-Visual-Odometry Positioning Estimation and Wall-Floor-Boundary Image Registration [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1