预测在WiFi热点停留的时间

Justin Manweiler, N. Santhapuri, Romit Roy Choudhury, Srihari Nelakuditi
{"title":"预测在WiFi热点停留的时间","authors":"Justin Manweiler, N. Santhapuri, Romit Roy Choudhury, Srihari Nelakuditi","doi":"10.1109/INFCOM.2013.6567123","DOIUrl":null,"url":null,"abstract":"Today's smartphones provide a variety of sensors, enabling high-resolution measurements of user behavior. We envision that many services can benefit from short-term predictions of complex human behavioral patterns. While enablement of behavior awareness through sensing is a broad research theme, one possibility is in predicting how quickly a person will move through a space. Such a prediction service could have numerous applications. For one example, we imagine shop owners predicting how long a particular customer is likely to browse merchandise, and issue targeted mobile coupons accordingly - customers in a hurry can be encouraged to stay and consider discounts. Within a space of moderate size, WiFi access points are uniquely positioned to track a statistical framework for user length of stay, passively recording metrics such as WiFI signal strength (RSSI) and potentially receiving client-uploaded sensor data. In this work, we attempt to quantity this opportunity, and show that human dwell time can be predicted with reasonable accuracy, even when restricted to passively observed WiFi RSSI.","PeriodicalId":206346,"journal":{"name":"2013 Proceedings IEEE INFOCOM","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Predicting length of stay at WiFi hotspots\",\"authors\":\"Justin Manweiler, N. Santhapuri, Romit Roy Choudhury, Srihari Nelakuditi\",\"doi\":\"10.1109/INFCOM.2013.6567123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's smartphones provide a variety of sensors, enabling high-resolution measurements of user behavior. We envision that many services can benefit from short-term predictions of complex human behavioral patterns. While enablement of behavior awareness through sensing is a broad research theme, one possibility is in predicting how quickly a person will move through a space. Such a prediction service could have numerous applications. For one example, we imagine shop owners predicting how long a particular customer is likely to browse merchandise, and issue targeted mobile coupons accordingly - customers in a hurry can be encouraged to stay and consider discounts. Within a space of moderate size, WiFi access points are uniquely positioned to track a statistical framework for user length of stay, passively recording metrics such as WiFI signal strength (RSSI) and potentially receiving client-uploaded sensor data. In this work, we attempt to quantity this opportunity, and show that human dwell time can be predicted with reasonable accuracy, even when restricted to passively observed WiFi RSSI.\",\"PeriodicalId\":206346,\"journal\":{\"name\":\"2013 Proceedings IEEE INFOCOM\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings IEEE INFOCOM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.2013.6567123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings IEEE INFOCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2013.6567123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

如今的智能手机提供了各种传感器,可以对用户行为进行高分辨率测量。我们设想,许多服务可以从复杂的人类行为模式的短期预测中受益。虽然通过感知实现行为意识是一个广泛的研究主题,但一种可能性是预测一个人在空间中移动的速度。这样的预测服务可以有许多应用。举个例子,我们想象店主预测一个特定顾客可能浏览商品的时间,并相应地发放有针对性的移动优惠券——可以鼓励赶时间的顾客留下来并考虑折扣。在中等大小的空间内,WiFi接入点具有独特的定位,可以跟踪用户停留时间的统计框架,被动记录WiFi信号强度(RSSI)等指标,并可能接收客户上传的传感器数据。在这项工作中,我们试图量化这一机会,并表明人类停留时间可以以合理的精度预测,即使局限于被动观察WiFi RSSI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting length of stay at WiFi hotspots
Today's smartphones provide a variety of sensors, enabling high-resolution measurements of user behavior. We envision that many services can benefit from short-term predictions of complex human behavioral patterns. While enablement of behavior awareness through sensing is a broad research theme, one possibility is in predicting how quickly a person will move through a space. Such a prediction service could have numerous applications. For one example, we imagine shop owners predicting how long a particular customer is likely to browse merchandise, and issue targeted mobile coupons accordingly - customers in a hurry can be encouraged to stay and consider discounts. Within a space of moderate size, WiFi access points are uniquely positioned to track a statistical framework for user length of stay, passively recording metrics such as WiFI signal strength (RSSI) and potentially receiving client-uploaded sensor data. In this work, we attempt to quantity this opportunity, and show that human dwell time can be predicted with reasonable accuracy, even when restricted to passively observed WiFi RSSI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VoteTrust: Leveraging friend invitation graph to defend against social network Sybils Groupon in the Air: A three-stage auction framework for Spectrum Group-buying Into the Moana1 — Hypergraph-based network layer indirection Prometheus: Privacy-aware data retrieval on hybrid cloud Adaptive device-free passive localization coping with dynamic target speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1