使用集成定理证明和模型检查的可扩展SoC信任验证

Xiaolong Guo, R. Dutta, P. Mishra, Yier Jin
{"title":"使用集成定理证明和模型检查的可扩展SoC信任验证","authors":"Xiaolong Guo, R. Dutta, P. Mishra, Yier Jin","doi":"10.1109/HST.2016.7495569","DOIUrl":null,"url":null,"abstract":"The wide usage of hardware Intellectual Property (IP) cores and software programs from untrusted vendors have raised security concerns for system designers. Existing solutions for detecting and preventing software attacks do not usually consider the presence of malicious logic in hardware. Similarly, hardware solutions for detecting Trojans and/or design backdoors do not consider the software running on it. Formal methods provide powerful solutions in detecting malicious behaviors in both hardware and software. However, they suffer from scalability issues and cannot be easily used for large-scale computer systems. To alleviate the scalability challenge, we propose a new integrated formal verification framework to evaluate the trust of computer systems constructed from untrusted third-party software and hardware resources. This framework combines an automated model checker with an interactive theorem prover for proving system-level security properties. We evaluate a vulnerable program executed on a bare metal LEON3 SPARC V8 processor and prove system security with considerable reduction in effort. Our method systematically reduces the effort required for verifying the program running on the System-on-Chip (SoC) compared to traditional interactive theorem proving methods.","PeriodicalId":194799,"journal":{"name":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Scalable SoC trust verification using integrated theorem proving and model checking\",\"authors\":\"Xiaolong Guo, R. Dutta, P. Mishra, Yier Jin\",\"doi\":\"10.1109/HST.2016.7495569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wide usage of hardware Intellectual Property (IP) cores and software programs from untrusted vendors have raised security concerns for system designers. Existing solutions for detecting and preventing software attacks do not usually consider the presence of malicious logic in hardware. Similarly, hardware solutions for detecting Trojans and/or design backdoors do not consider the software running on it. Formal methods provide powerful solutions in detecting malicious behaviors in both hardware and software. However, they suffer from scalability issues and cannot be easily used for large-scale computer systems. To alleviate the scalability challenge, we propose a new integrated formal verification framework to evaluate the trust of computer systems constructed from untrusted third-party software and hardware resources. This framework combines an automated model checker with an interactive theorem prover for proving system-level security properties. We evaluate a vulnerable program executed on a bare metal LEON3 SPARC V8 processor and prove system security with considerable reduction in effort. Our method systematically reduces the effort required for verifying the program running on the System-on-Chip (SoC) compared to traditional interactive theorem proving methods.\",\"PeriodicalId\":194799,\"journal\":{\"name\":\"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HST.2016.7495569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2016.7495569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

硬件知识产权(IP)内核和来自不可信供应商的软件程序的广泛使用引起了系统设计人员的安全关注。现有的检测和防止软件攻击的解决方案通常不会考虑硬件中是否存在恶意逻辑。同样,用于检测木马和/或设计后门的硬件解决方案也不考虑在其上运行的软件。形式化方法为检测硬件和软件中的恶意行为提供了强大的解决方案。然而,它们存在可伸缩性问题,不能很容易地用于大型计算机系统。为了缓解可扩展性的挑战,我们提出了一个新的集成形式验证框架来评估由不受信任的第三方软件和硬件资源构建的计算机系统的信任。该框架将自动模型检查器与用于证明系统级安全属性的交互式定理证明器相结合。我们评估了在裸机LEON3 SPARC V8处理器上执行的一个易受攻击的程序,并以相当少的工作量证明了系统的安全性。与传统的交互式定理证明方法相比,我们的方法系统地减少了验证在片上系统(SoC)上运行的程序所需的工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable SoC trust verification using integrated theorem proving and model checking
The wide usage of hardware Intellectual Property (IP) cores and software programs from untrusted vendors have raised security concerns for system designers. Existing solutions for detecting and preventing software attacks do not usually consider the presence of malicious logic in hardware. Similarly, hardware solutions for detecting Trojans and/or design backdoors do not consider the software running on it. Formal methods provide powerful solutions in detecting malicious behaviors in both hardware and software. However, they suffer from scalability issues and cannot be easily used for large-scale computer systems. To alleviate the scalability challenge, we propose a new integrated formal verification framework to evaluate the trust of computer systems constructed from untrusted third-party software and hardware resources. This framework combines an automated model checker with an interactive theorem prover for proving system-level security properties. We evaluate a vulnerable program executed on a bare metal LEON3 SPARC V8 processor and prove system security with considerable reduction in effort. Our method systematically reduces the effort required for verifying the program running on the System-on-Chip (SoC) compared to traditional interactive theorem proving methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SDSM: Fast and scalable security support for directory-based distributed shared memory Granularity and detection capability of an adaptive embedded Hardware Trojan detection system Adaptive real-time Trojan detection framework through machine learning Parsimonious design strategy for linear layers with high diffusion in block ciphers Hardware security risk assessment: A case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1