一种基于特征信息的多样本生物识别系统分数级融合增强方法

Sandeep Puthanveetil Satheesan, S. Tulyakov, V. Govindaraju
{"title":"一种基于特征信息的多样本生物识别系统分数级融合增强方法","authors":"Sandeep Puthanveetil Satheesan, S. Tulyakov, V. Govindaraju","doi":"10.1109/NCVPRIPG.2013.6776242","DOIUrl":null,"url":null,"abstract":"Matching score fusion is a commonly used technique for improving the performance of biometric systems. In this paper we investigate the methods for fusing the scores obtained from matching individual video frames to a stored face template. Traditional fusion rules like sum and product does not account for the diversity of information contained in consecutive frames. Instead, we propose to use a quantitative measure of the shared information content between adjacent frame pairs to capture this information and enhance the score fusion performance. We conduct our experiments in a database of 132 person videos. The results show that application of information content to score level fusion can increase the performance of a fusion algorithm and hence make it more robust to errors. The developed matching score fusion method can be applied to other systems involving the multiple biometric samples or scans.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A feature information based approach for enhancing score-level fusion in multi-sample biometric systems\",\"authors\":\"Sandeep Puthanveetil Satheesan, S. Tulyakov, V. Govindaraju\",\"doi\":\"10.1109/NCVPRIPG.2013.6776242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matching score fusion is a commonly used technique for improving the performance of biometric systems. In this paper we investigate the methods for fusing the scores obtained from matching individual video frames to a stored face template. Traditional fusion rules like sum and product does not account for the diversity of information contained in consecutive frames. Instead, we propose to use a quantitative measure of the shared information content between adjacent frame pairs to capture this information and enhance the score fusion performance. We conduct our experiments in a database of 132 person videos. The results show that application of information content to score level fusion can increase the performance of a fusion algorithm and hence make it more robust to errors. The developed matching score fusion method can be applied to other systems involving the multiple biometric samples or scans.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

匹配分数融合是提高生物识别系统性能的常用技术。在本文中,我们研究了融合从匹配单个视频帧获得的分数到存储的人脸模板的方法。传统的融合规则,如求和和乘积,并没有考虑到连续帧中包含的信息的多样性。相反,我们建议使用相邻帧对之间共享信息内容的定量度量来捕获这些信息并提高分数融合性能。我们在一个包含132个人视频的数据库中进行实验。结果表明,将信息含量应用到分数融合中可以提高融合算法的性能,从而使融合算法对误差具有更强的鲁棒性。所开发的匹配分数融合方法可以应用于涉及多个生物特征样本或扫描的其他系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A feature information based approach for enhancing score-level fusion in multi-sample biometric systems
Matching score fusion is a commonly used technique for improving the performance of biometric systems. In this paper we investigate the methods for fusing the scores obtained from matching individual video frames to a stored face template. Traditional fusion rules like sum and product does not account for the diversity of information contained in consecutive frames. Instead, we propose to use a quantitative measure of the shared information content between adjacent frame pairs to capture this information and enhance the score fusion performance. We conduct our experiments in a database of 132 person videos. The results show that application of information content to score level fusion can increase the performance of a fusion algorithm and hence make it more robust to errors. The developed matching score fusion method can be applied to other systems involving the multiple biometric samples or scans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1