手写体孟加拉语基本字、数字和元音修饰语的分层分类

Khondker Nayef Reza, Mumit Khan
{"title":"手写体孟加拉语基本字、数字和元音修饰语的分层分类","authors":"Khondker Nayef Reza, Mumit Khan","doi":"10.1109/ICFHR.2012.206","DOIUrl":null,"url":null,"abstract":"For better performance in multilayer or hierarchical classification of handwritten text, appropriate grouping of similar symbols is very important. Here we aim to develop a reliable grouping schema for the similar looking basic characters, numerals and vowel modifiers of Bangla language. We experimented with thickened and thinned segmented handwritten text to compare which type of image is better for which group. For classification we chose Support Vector Machine (SVM) as it outperforms other classifiers in this field. We used both “one against one” and “one against all” strategies for multiclass SVM and compared their performance.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Grouping of Handwritten Bangla Basic Characters, Numerals and Vowel Modifiers for Multilayer Classification\",\"authors\":\"Khondker Nayef Reza, Mumit Khan\",\"doi\":\"10.1109/ICFHR.2012.206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For better performance in multilayer or hierarchical classification of handwritten text, appropriate grouping of similar symbols is very important. Here we aim to develop a reliable grouping schema for the similar looking basic characters, numerals and vowel modifiers of Bangla language. We experimented with thickened and thinned segmented handwritten text to compare which type of image is better for which group. For classification we chose Support Vector Machine (SVM) as it outperforms other classifiers in this field. We used both “one against one” and “one against all” strategies for multiclass SVM and compared their performance.\",\"PeriodicalId\":291062,\"journal\":{\"name\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2012.206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了在多层或分层的手写文本分类中获得更好的性能,对相似符号进行适当的分组是非常重要的。本文旨在为孟加拉语相似的基本字、数字和元音修饰语建立一个可靠的分组模式。我们实验了加厚和稀释的分割手写文本,以比较哪种类型的图像更适合哪一组。对于分类,我们选择支持向量机(SVM),因为它优于该领域的其他分类器。我们对多类支持向量机分别采用了“一对一”和“一对全”两种策略,并比较了它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grouping of Handwritten Bangla Basic Characters, Numerals and Vowel Modifiers for Multilayer Classification
For better performance in multilayer or hierarchical classification of handwritten text, appropriate grouping of similar symbols is very important. Here we aim to develop a reliable grouping schema for the similar looking basic characters, numerals and vowel modifiers of Bangla language. We experimented with thickened and thinned segmented handwritten text to compare which type of image is better for which group. For classification we chose Support Vector Machine (SVM) as it outperforms other classifiers in this field. We used both “one against one” and “one against all” strategies for multiclass SVM and compared their performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Off-Line Features Integration for On-Line Handwriting Graphemes Modeling Improvement Analysis of Different Subspace Mixture Models in Handwriting Recognition Structural Learning for Writer Identification in Offline Handwriting A Study of Handwritten Characters by Shape Descriptors: Doping Using the Freeman Code Dynamic Programming Matching with Global Features for Online Character Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1