使用多种特征的引文预测

H. Bhat, Li-Hsuan Huang, Sebastian Rodriguez, Rick Dale, E. Heit
{"title":"使用多种特征的引文预测","authors":"H. Bhat, Li-Hsuan Huang, Sebastian Rodriguez, Rick Dale, E. Heit","doi":"10.1109/ICDMW.2015.131","DOIUrl":null,"url":null,"abstract":"Using a large database of nearly 8 million bibliographic entries spanning over 3 million unique authors, we build predictive models to classify a paper based on its citation count. Our approach involves considering a diverse array of features including the interdisciplinarity of authors, which we quantify using Shannon entropy and Jensen-Shannon divergence. Rather than rely on subject codes, we model the disciplinary preferences of each author by estimating the author's journal distribution. We conduct an exploratory data analysis on the relationship between these interdisciplinarity variables and citation counts. In addition, we model the effects of (1) each author's influence in coauthorship graphs, and (2) words in the title of the paper. We then build classifiers for two-and three-class classification problems that correspond to predicting the interval in which a paper's citation count will lie. We use cross-validation and a true test set to tune model parameters and assess model performance. The best model we build, a classification tree, yields test set accuracies of 0.87 and 0.66, respectively. Using this model, we also provide rankings of attribute importance, for the three-class problem, these rankings indicate the importance of our interdisciplinarity metrics in predicting citation counts.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Citation Prediction Using Diverse Features\",\"authors\":\"H. Bhat, Li-Hsuan Huang, Sebastian Rodriguez, Rick Dale, E. Heit\",\"doi\":\"10.1109/ICDMW.2015.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a large database of nearly 8 million bibliographic entries spanning over 3 million unique authors, we build predictive models to classify a paper based on its citation count. Our approach involves considering a diverse array of features including the interdisciplinarity of authors, which we quantify using Shannon entropy and Jensen-Shannon divergence. Rather than rely on subject codes, we model the disciplinary preferences of each author by estimating the author's journal distribution. We conduct an exploratory data analysis on the relationship between these interdisciplinarity variables and citation counts. In addition, we model the effects of (1) each author's influence in coauthorship graphs, and (2) words in the title of the paper. We then build classifiers for two-and three-class classification problems that correspond to predicting the interval in which a paper's citation count will lie. We use cross-validation and a true test set to tune model parameters and assess model performance. The best model we build, a classification tree, yields test set accuracies of 0.87 and 0.66, respectively. Using this model, we also provide rankings of attribute importance, for the three-class problem, these rankings indicate the importance of our interdisciplinarity metrics in predicting citation counts.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

利用一个包含近800万个书目条目、300多万独立作者的大型数据库,我们建立了预测模型,根据引用次数对论文进行分类。我们的方法包括考虑多种特征,包括作者的跨学科性,我们使用香农熵和Jensen-Shannon散度对其进行量化。而不是依赖于学科代码,我们通过估计作者的期刊分布来建模每个作者的学科偏好。我们对这些跨学科变量与被引次数之间的关系进行了探索性数据分析。此外,我们对(1)每位作者在合作关系图中的影响力和(2)论文标题中的单词的影响进行了建模。然后,我们为两类和三类分类问题构建分类器,这些分类器对应于预测论文被引用次数的间隔。我们使用交叉验证和真实测试集来调整模型参数并评估模型性能。我们建立的最好的模型是一个分类树,它的测试集准确率分别为0.87和0.66。使用该模型,我们还提供了属性重要性排名,对于三类问题,这些排名表明我们的跨学科指标在预测引用数量方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Citation Prediction Using Diverse Features
Using a large database of nearly 8 million bibliographic entries spanning over 3 million unique authors, we build predictive models to classify a paper based on its citation count. Our approach involves considering a diverse array of features including the interdisciplinarity of authors, which we quantify using Shannon entropy and Jensen-Shannon divergence. Rather than rely on subject codes, we model the disciplinary preferences of each author by estimating the author's journal distribution. We conduct an exploratory data analysis on the relationship between these interdisciplinarity variables and citation counts. In addition, we model the effects of (1) each author's influence in coauthorship graphs, and (2) words in the title of the paper. We then build classifiers for two-and three-class classification problems that correspond to predicting the interval in which a paper's citation count will lie. We use cross-validation and a true test set to tune model parameters and assess model performance. The best model we build, a classification tree, yields test set accuracies of 0.87 and 0.66, respectively. Using this model, we also provide rankings of attribute importance, for the three-class problem, these rankings indicate the importance of our interdisciplinarity metrics in predicting citation counts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1