基于时间激光雷达数据的自动驾驶3d目标检测

S. McCrae, A. Zakhor
{"title":"基于时间激光雷达数据的自动驾驶3d目标检测","authors":"S. McCrae, A. Zakhor","doi":"10.1109/ICIP40778.2020.9191134","DOIUrl":null,"url":null,"abstract":"3D object detection is a fundamental problem in the space of autonomous driving, and pedestrians are some of the most important objects to detect. The recently introduced PointPillars architecture has been shown to be effective in object detection. It voxelizes 3D LiDAR point clouds to produce a 2D pseudo-image to be used for object detection. In this work, we modify PointPillars to become a recurrent network, using fewer LiDAR frames per forward pass. Specifically, as compared to the original PointPillars model which uses 10 LiDAR frames per forward pass, our recurrent model uses 3 frames and recurrent memory. With this modification, we observe an 8% increase in pedestrian detection and a slight decline in performance on vehicle detection in a coarsely voxelized setting. Furthermore, when given 3 frames of data as input to both models, our recurrent architecture outperforms PointPillars by 21% and 1% in pedestrian and vehicle detection, respectively.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"3d Object Detection For Autonomous Driving Using Temporal Lidar Data\",\"authors\":\"S. McCrae, A. Zakhor\",\"doi\":\"10.1109/ICIP40778.2020.9191134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D object detection is a fundamental problem in the space of autonomous driving, and pedestrians are some of the most important objects to detect. The recently introduced PointPillars architecture has been shown to be effective in object detection. It voxelizes 3D LiDAR point clouds to produce a 2D pseudo-image to be used for object detection. In this work, we modify PointPillars to become a recurrent network, using fewer LiDAR frames per forward pass. Specifically, as compared to the original PointPillars model which uses 10 LiDAR frames per forward pass, our recurrent model uses 3 frames and recurrent memory. With this modification, we observe an 8% increase in pedestrian detection and a slight decline in performance on vehicle detection in a coarsely voxelized setting. Furthermore, when given 3 frames of data as input to both models, our recurrent architecture outperforms PointPillars by 21% and 1% in pedestrian and vehicle detection, respectively.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

三维物体检测是自动驾驶空间中的一个基本问题,行人是其中最重要的检测对象。最近引入的PointPillars架构已被证明在目标检测方面是有效的。它将三维激光雷达点云体素化,生成用于目标检测的二维伪图像。在这项工作中,我们修改了PointPillars,使其成为一个循环网络,每次向前通过使用更少的LiDAR帧。具体来说,与每个前向通道使用10个LiDAR帧的原始PointPillars模型相比,我们的循环模型使用3帧和循环内存。通过这种修改,我们观察到在粗体素化设置下行人检测性能提高了8%,车辆检测性能略有下降。此外,当给定3帧数据作为两个模型的输入时,我们的循环架构在行人和车辆检测方面分别比PointPillars高出21%和1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3d Object Detection For Autonomous Driving Using Temporal Lidar Data
3D object detection is a fundamental problem in the space of autonomous driving, and pedestrians are some of the most important objects to detect. The recently introduced PointPillars architecture has been shown to be effective in object detection. It voxelizes 3D LiDAR point clouds to produce a 2D pseudo-image to be used for object detection. In this work, we modify PointPillars to become a recurrent network, using fewer LiDAR frames per forward pass. Specifically, as compared to the original PointPillars model which uses 10 LiDAR frames per forward pass, our recurrent model uses 3 frames and recurrent memory. With this modification, we observe an 8% increase in pedestrian detection and a slight decline in performance on vehicle detection in a coarsely voxelized setting. Furthermore, when given 3 frames of data as input to both models, our recurrent architecture outperforms PointPillars by 21% and 1% in pedestrian and vehicle detection, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1