一种新的空间关键字范围查询索引方法

Panagiotis Tampakis, Dimitris Spyrellis, C. Doulkeridis, N. Pelekis, Christos Kalyvas, Akrivi Vlachou
{"title":"一种新的空间关键字范围查询索引方法","authors":"Panagiotis Tampakis, Dimitris Spyrellis, C. Doulkeridis, N. Pelekis, Christos Kalyvas, Akrivi Vlachou","doi":"10.1145/3469830.3470897","DOIUrl":null,"url":null,"abstract":"Spatial-keyword queries are important for a wide range of applications that retrieve data based on a combination of keyword search and spatial constraints. However, efficient processing of spatial-keyword queries is not a trivial task because the combination of textual and spatial data results in a high-dimensional representation that is challenging to index effectively. To address this problem, in this paper, we propose a novel indexing scheme for efficient support of spatial-keyword range queries. At the heart of our approach lies a carefully-designed mapping of spatio-textual data to a two-dimensional (2D) space that produces compact partitions of spatio-textual data. In turn, the mapped 2D data can be indexed effectively by traditional spatial data structures, such as an R-tree. We propose bounds, theoretically proven for correctness, that lead to the design of a filter-and-refine algorithm that prunes the search space effectively. In this way, our approach for spatial-keyword range queries is readily applicable to any database system that provides spatial support. In our experimental evaluation, we demonstrate how our algorithm can be implemented over PostgreSQL and exploit its underlying spatial index provided by PostGIS, in order to process spatial-keyword range queries efficiently. Moreover, we show that our solution outperforms different competitor approaches.","PeriodicalId":206910,"journal":{"name":"17th International Symposium on Spatial and Temporal Databases","volume":"91 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Novel Indexing Method for Spatial-Keyword Range Queries\",\"authors\":\"Panagiotis Tampakis, Dimitris Spyrellis, C. Doulkeridis, N. Pelekis, Christos Kalyvas, Akrivi Vlachou\",\"doi\":\"10.1145/3469830.3470897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial-keyword queries are important for a wide range of applications that retrieve data based on a combination of keyword search and spatial constraints. However, efficient processing of spatial-keyword queries is not a trivial task because the combination of textual and spatial data results in a high-dimensional representation that is challenging to index effectively. To address this problem, in this paper, we propose a novel indexing scheme for efficient support of spatial-keyword range queries. At the heart of our approach lies a carefully-designed mapping of spatio-textual data to a two-dimensional (2D) space that produces compact partitions of spatio-textual data. In turn, the mapped 2D data can be indexed effectively by traditional spatial data structures, such as an R-tree. We propose bounds, theoretically proven for correctness, that lead to the design of a filter-and-refine algorithm that prunes the search space effectively. In this way, our approach for spatial-keyword range queries is readily applicable to any database system that provides spatial support. In our experimental evaluation, we demonstrate how our algorithm can be implemented over PostgreSQL and exploit its underlying spatial index provided by PostGIS, in order to process spatial-keyword range queries efficiently. Moreover, we show that our solution outperforms different competitor approaches.\",\"PeriodicalId\":206910,\"journal\":{\"name\":\"17th International Symposium on Spatial and Temporal Databases\",\"volume\":\"91 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th International Symposium on Spatial and Temporal Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469830.3470897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Symposium on Spatial and Temporal Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469830.3470897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

空间关键字查询对于基于关键字搜索和空间约束的组合检索数据的广泛应用程序非常重要。然而,有效地处理空间关键字查询并不是一项简单的任务,因为文本和空间数据的组合会产生高维表示,很难有效地建立索引。为了解决这个问题,本文提出了一种新的索引方案,以有效地支持空间关键字范围查询。我们方法的核心是精心设计的空间文本数据到二维(2D)空间的映射,从而产生空间文本数据的紧凑分区。反过来,映射的2D数据可以通过传统的空间数据结构(如r树)有效地索引。我们提出了从理论上证明其正确性的边界,从而设计了一种过滤和精炼算法,可以有效地修剪搜索空间。通过这种方式,我们的空间关键字范围查询方法很容易适用于任何提供空间支持的数据库系统。在我们的实验评估中,我们演示了如何在PostgreSQL上实现我们的算法,并利用PostGIS提供的底层空间索引,以便有效地处理空间关键字范围查询。此外,我们证明了我们的解决方案优于不同的竞争对手的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Indexing Method for Spatial-Keyword Range Queries
Spatial-keyword queries are important for a wide range of applications that retrieve data based on a combination of keyword search and spatial constraints. However, efficient processing of spatial-keyword queries is not a trivial task because the combination of textual and spatial data results in a high-dimensional representation that is challenging to index effectively. To address this problem, in this paper, we propose a novel indexing scheme for efficient support of spatial-keyword range queries. At the heart of our approach lies a carefully-designed mapping of spatio-textual data to a two-dimensional (2D) space that produces compact partitions of spatio-textual data. In turn, the mapped 2D data can be indexed effectively by traditional spatial data structures, such as an R-tree. We propose bounds, theoretically proven for correctness, that lead to the design of a filter-and-refine algorithm that prunes the search space effectively. In this way, our approach for spatial-keyword range queries is readily applicable to any database system that provides spatial support. In our experimental evaluation, we demonstrate how our algorithm can be implemented over PostgreSQL and exploit its underlying spatial index provided by PostGIS, in order to process spatial-keyword range queries efficiently. Moreover, we show that our solution outperforms different competitor approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NALMO: A Natural Language Interface for Moving Objects Databases Spatial Skyline Queries on Triangulated Irregular Networks Metro Maps on Flexible Base Grids Attribute Propagation for Utilities SPRIG: A Learned Spatial Index for Range and kNN Queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1