预测MOOC中参与度指标的下降

Miguel L. Bote-Lorenzo, E. Gómez-Sánchez
{"title":"预测MOOC中参与度指标的下降","authors":"Miguel L. Bote-Lorenzo, E. Gómez-Sánchez","doi":"10.1145/3027385.3027387","DOIUrl":null,"url":null,"abstract":"Predicting the decrease of students' engagement in typical MOOC tasks such as watching lecture videos or submitting assignments is key to trigger timely interventions in order to try to avoid the disengagement before it takes place. This paper proposes an approach to build the necessary predictive models using students' data that becomes available during a course. The approach was employed in an experimental study to predict the decrease of three different engagement indicators in a MOOC. The results suggest its feasibility with values of area under the curve for different predictors ranging from 0.718 to 0.914.","PeriodicalId":160897,"journal":{"name":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Predicting the decrease of engagement indicators in a MOOC\",\"authors\":\"Miguel L. Bote-Lorenzo, E. Gómez-Sánchez\",\"doi\":\"10.1145/3027385.3027387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the decrease of students' engagement in typical MOOC tasks such as watching lecture videos or submitting assignments is key to trigger timely interventions in order to try to avoid the disengagement before it takes place. This paper proposes an approach to build the necessary predictive models using students' data that becomes available during a course. The approach was employed in an experimental study to predict the decrease of three different engagement indicators in a MOOC. The results suggest its feasibility with values of area under the curve for different predictors ranging from 0.718 to 0.914.\",\"PeriodicalId\":160897,\"journal\":{\"name\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3027385.3027387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3027387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

预测学生在典型的MOOC任务(如观看讲座视频或提交作业)中参与度的下降,是及时触发干预措施的关键,以便在这种情况发生之前避免脱离参与。本文提出了一种利用课程中可用的学生数据构建必要预测模型的方法。在一项实验研究中,该方法被用于预测MOOC中三种不同参与指标的下降。结果表明,不同预测因子的曲线下面积范围为0.718 ~ 0.914。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the decrease of engagement indicators in a MOOC
Predicting the decrease of students' engagement in typical MOOC tasks such as watching lecture videos or submitting assignments is key to trigger timely interventions in order to try to avoid the disengagement before it takes place. This paper proposes an approach to build the necessary predictive models using students' data that becomes available during a course. The approach was employed in an experimental study to predict the decrease of three different engagement indicators in a MOOC. The results suggest its feasibility with values of area under the curve for different predictors ranging from 0.718 to 0.914.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An information policy perspective on learning analytics When learning is high stake How can we accelerate dissemination of knowledge and learning?: developing an online knowledge management platform for networked improvement communities LAK17 hackathon: getting the right information to the right people so they can take the right action Strategies for data and learning analytics informed national education policies: the case of Uruguay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1