Ming Sun, Aasish Pappu, Yun-Nung (Vivian) Chen, Alexander I. Rudnicky
{"title":"多域对话的弱监督用户意图检测","authors":"Ming Sun, Aasish Pappu, Yun-Nung (Vivian) Chen, Alexander I. Rudnicky","doi":"10.1109/SLT.2016.7846250","DOIUrl":null,"url":null,"abstract":"Users interact with mobile apps with certain intents such as finding a restaurant. Some intents and their corresponding activities are complex and may involve multiple apps; for example, a restaurant app, a messenger app and a calendar app may be needed to plan a dinner with friends. However, activities may be quite personal and third-party developers would not be building apps to specifically handle complex intents (e.g., a DinnerPlanner). Instead we want our intelligent agent to actively learn to understand these intents and provide assistance when needed. This paper proposes a framework to enable the agent to learn an inventory of intents from a small set of task-oriented user utterances. The experiments show that on previously unseen user activities, the agent is able to reliably recognize user intents using graph-based semi-supervised learning methods. The dataset, models, and the system outputs are available to research community.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Weakly supervised user intent detection for multi-domain dialogues\",\"authors\":\"Ming Sun, Aasish Pappu, Yun-Nung (Vivian) Chen, Alexander I. Rudnicky\",\"doi\":\"10.1109/SLT.2016.7846250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Users interact with mobile apps with certain intents such as finding a restaurant. Some intents and their corresponding activities are complex and may involve multiple apps; for example, a restaurant app, a messenger app and a calendar app may be needed to plan a dinner with friends. However, activities may be quite personal and third-party developers would not be building apps to specifically handle complex intents (e.g., a DinnerPlanner). Instead we want our intelligent agent to actively learn to understand these intents and provide assistance when needed. This paper proposes a framework to enable the agent to learn an inventory of intents from a small set of task-oriented user utterances. The experiments show that on previously unseen user activities, the agent is able to reliably recognize user intents using graph-based semi-supervised learning methods. The dataset, models, and the system outputs are available to research community.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weakly supervised user intent detection for multi-domain dialogues
Users interact with mobile apps with certain intents such as finding a restaurant. Some intents and their corresponding activities are complex and may involve multiple apps; for example, a restaurant app, a messenger app and a calendar app may be needed to plan a dinner with friends. However, activities may be quite personal and third-party developers would not be building apps to specifically handle complex intents (e.g., a DinnerPlanner). Instead we want our intelligent agent to actively learn to understand these intents and provide assistance when needed. This paper proposes a framework to enable the agent to learn an inventory of intents from a small set of task-oriented user utterances. The experiments show that on previously unseen user activities, the agent is able to reliably recognize user intents using graph-based semi-supervised learning methods. The dataset, models, and the system outputs are available to research community.