多域对话的弱监督用户意图检测

Ming Sun, Aasish Pappu, Yun-Nung (Vivian) Chen, Alexander I. Rudnicky
{"title":"多域对话的弱监督用户意图检测","authors":"Ming Sun, Aasish Pappu, Yun-Nung (Vivian) Chen, Alexander I. Rudnicky","doi":"10.1109/SLT.2016.7846250","DOIUrl":null,"url":null,"abstract":"Users interact with mobile apps with certain intents such as finding a restaurant. Some intents and their corresponding activities are complex and may involve multiple apps; for example, a restaurant app, a messenger app and a calendar app may be needed to plan a dinner with friends. However, activities may be quite personal and third-party developers would not be building apps to specifically handle complex intents (e.g., a DinnerPlanner). Instead we want our intelligent agent to actively learn to understand these intents and provide assistance when needed. This paper proposes a framework to enable the agent to learn an inventory of intents from a small set of task-oriented user utterances. The experiments show that on previously unseen user activities, the agent is able to reliably recognize user intents using graph-based semi-supervised learning methods. The dataset, models, and the system outputs are available to research community.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Weakly supervised user intent detection for multi-domain dialogues\",\"authors\":\"Ming Sun, Aasish Pappu, Yun-Nung (Vivian) Chen, Alexander I. Rudnicky\",\"doi\":\"10.1109/SLT.2016.7846250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Users interact with mobile apps with certain intents such as finding a restaurant. Some intents and their corresponding activities are complex and may involve multiple apps; for example, a restaurant app, a messenger app and a calendar app may be needed to plan a dinner with friends. However, activities may be quite personal and third-party developers would not be building apps to specifically handle complex intents (e.g., a DinnerPlanner). Instead we want our intelligent agent to actively learn to understand these intents and provide assistance when needed. This paper proposes a framework to enable the agent to learn an inventory of intents from a small set of task-oriented user utterances. The experiments show that on previously unseen user activities, the agent is able to reliably recognize user intents using graph-based semi-supervised learning methods. The dataset, models, and the system outputs are available to research community.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

用户与手机应用的交互带有特定的目的,比如寻找一家餐馆。一些意图及其相应的活动是复杂的,可能涉及多个应用程序;例如,可能需要一个餐厅应用程序、一个信使应用程序和一个日历应用程序来计划与朋友的晚餐。然而,活动可能是非常个性化的,第三方开发人员不会构建专门处理复杂意图的应用程序(例如,DinnerPlanner)。相反,我们希望我们的智能代理能够主动学习理解这些意图,并在需要时提供帮助。本文提出了一个框架,使智能体能够从一小组面向任务的用户话语中学习意图清单。实验表明,对于以前未见过的用户活动,智能体能够使用基于图的半监督学习方法可靠地识别用户意图。数据集、模型和系统输出可供研究界使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weakly supervised user intent detection for multi-domain dialogues
Users interact with mobile apps with certain intents such as finding a restaurant. Some intents and their corresponding activities are complex and may involve multiple apps; for example, a restaurant app, a messenger app and a calendar app may be needed to plan a dinner with friends. However, activities may be quite personal and third-party developers would not be building apps to specifically handle complex intents (e.g., a DinnerPlanner). Instead we want our intelligent agent to actively learn to understand these intents and provide assistance when needed. This paper proposes a framework to enable the agent to learn an inventory of intents from a small set of task-oriented user utterances. The experiments show that on previously unseen user activities, the agent is able to reliably recognize user intents using graph-based semi-supervised learning methods. The dataset, models, and the system outputs are available to research community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1