无人机搜索:最大化目标获取

H. Al-Helal, J. Sprinkle
{"title":"无人机搜索:最大化目标获取","authors":"H. Al-Helal, J. Sprinkle","doi":"10.1109/ECBS.2010.9","DOIUrl":null,"url":null,"abstract":"In situations where a human operator is unable to perform tactical control of an unmanned aerial vehicle (UAV), it may be necessary to have the UAV make or suggest tactical decisions. The interaction of the UAV computers with those of the human decision makers requires that choices for the human decision maker be easy to interpret and intuitive to implement or approve. This paper provides closed-form solutions to maximize detection of a slow-moving ground target by a UAV. The output of these solutions is a height at which the UAV should fly in order to maximize probability of detection, which informs the operator whether a single vehicle is sufficient. We assume that the UAV can travel faster than the ground target with some bounded speed (but no certain direction). The ground target is detected when it is inside a field of view which is a function of the state of the UAV, so the controller for motion affects whether the target will be detected. We also provide avenues for future work where we consider the impact of results for multi-UAV search and alternative sensor accuracy models.","PeriodicalId":356361,"journal":{"name":"2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"UAV Search: Maximizing Target Acquisition\",\"authors\":\"H. Al-Helal, J. Sprinkle\",\"doi\":\"10.1109/ECBS.2010.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In situations where a human operator is unable to perform tactical control of an unmanned aerial vehicle (UAV), it may be necessary to have the UAV make or suggest tactical decisions. The interaction of the UAV computers with those of the human decision makers requires that choices for the human decision maker be easy to interpret and intuitive to implement or approve. This paper provides closed-form solutions to maximize detection of a slow-moving ground target by a UAV. The output of these solutions is a height at which the UAV should fly in order to maximize probability of detection, which informs the operator whether a single vehicle is sufficient. We assume that the UAV can travel faster than the ground target with some bounded speed (but no certain direction). The ground target is detected when it is inside a field of view which is a function of the state of the UAV, so the controller for motion affects whether the target will be detected. We also provide avenues for future work where we consider the impact of results for multi-UAV search and alternative sensor accuracy models.\",\"PeriodicalId\":356361,\"journal\":{\"name\":\"2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECBS.2010.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECBS.2010.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在人类操作员无法执行无人驾驶飞行器(UAV)战术控制的情况下,可能有必要让无人机做出或建议战术决策。无人机计算机与人类决策者的交互要求人类决策者的选择易于解释和直观地实施或批准。本文提供了一种能够最大限度地检测慢速移动地面目标的封闭式解决方案。这些解决方案的输出是无人机应该飞行的高度,以便最大限度地检测概率,这通知操作员单个飞行器是否足够。我们假设无人机可以以一定的速度(但没有确定的方向)比地面目标更快地飞行。地面目标是在视场内被检测到的,这是无人机状态的函数,因此运动控制器影响目标是否被检测到。我们还为未来的工作提供了途径,我们考虑了多无人机搜索结果和替代传感器精度模型的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UAV Search: Maximizing Target Acquisition
In situations where a human operator is unable to perform tactical control of an unmanned aerial vehicle (UAV), it may be necessary to have the UAV make or suggest tactical decisions. The interaction of the UAV computers with those of the human decision makers requires that choices for the human decision maker be easy to interpret and intuitive to implement or approve. This paper provides closed-form solutions to maximize detection of a slow-moving ground target by a UAV. The output of these solutions is a height at which the UAV should fly in order to maximize probability of detection, which informs the operator whether a single vehicle is sufficient. We assume that the UAV can travel faster than the ground target with some bounded speed (but no certain direction). The ground target is detected when it is inside a field of view which is a function of the state of the UAV, so the controller for motion affects whether the target will be detected. We also provide avenues for future work where we consider the impact of results for multi-UAV search and alternative sensor accuracy models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Based Statistical Testing and Durations Visual Tracking Based on 3D Probabilistic Reconstruction Component-Based Architecture for e-Gov Web Systems Development Towards an Architectural Framework for Agile Software Development Fault Management Driven Design with Safety and Security Requirements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1