论图神经网络的分析

Thanh-Dat Nguyen, Thanh Le-Cong, Thanh-Hung Nguyen, X. Le, Quyet-Thang Huynh
{"title":"论图神经网络的分析","authors":"Thanh-Dat Nguyen, Thanh Le-Cong, Thanh-Hung Nguyen, X. Le, Quyet-Thang Huynh","doi":"10.1145/3510455.3512780","DOIUrl":null,"url":null,"abstract":"Graph Neural Networks (GNNs) have recently emerged as an effective framework for representing and analyzing graph-structured data. GNNs have been applied to many real-world problems such as knowledge graph analysis, social networks recommendation, and even COVID-19 detection and vaccine development. However, unlike other deep neural networks such as Feedforward Neural Networks (FFNNs), few verification and property inference techniques exist for GNNs. This is potentially due to dynamic behaviors of GNNs, which can take arbitrary graphs as input, whereas FFNNs which only take fixed size numerical vectors as inputs. This paper proposes GNN-Infer, an approach to analyze and infer properties of GNNs by extracting influential structures of the GNNs and then converting them into FFNNs. This allows us to leverage existing powerful FFNNs analyses to obtain results for the original GNNs. We discuss various designs of CNN-lnfer to ensure the scalability and accuracy of the conversions. We also illustrate CNN-Infer on a study case of node classification. We believe that CNN-Infer opens new research directions for understanding and analyzing GNNs. ACM Reference Format: Thanh-Dat Nguyen, Thanh Le-Cong, ThanhVu H. Nguyen, Xuan-Bach D. Le, and Quyet-Thang Huynh. 2022. Toward the Analysis of Graph Neural Networks. In New Ideas and Emerging Results (ICSE-NIER’22), May 21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3510455.3512780","PeriodicalId":416186,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Toward the Analysis of Graph Neural Networks\",\"authors\":\"Thanh-Dat Nguyen, Thanh Le-Cong, Thanh-Hung Nguyen, X. Le, Quyet-Thang Huynh\",\"doi\":\"10.1145/3510455.3512780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph Neural Networks (GNNs) have recently emerged as an effective framework for representing and analyzing graph-structured data. GNNs have been applied to many real-world problems such as knowledge graph analysis, social networks recommendation, and even COVID-19 detection and vaccine development. However, unlike other deep neural networks such as Feedforward Neural Networks (FFNNs), few verification and property inference techniques exist for GNNs. This is potentially due to dynamic behaviors of GNNs, which can take arbitrary graphs as input, whereas FFNNs which only take fixed size numerical vectors as inputs. This paper proposes GNN-Infer, an approach to analyze and infer properties of GNNs by extracting influential structures of the GNNs and then converting them into FFNNs. This allows us to leverage existing powerful FFNNs analyses to obtain results for the original GNNs. We discuss various designs of CNN-lnfer to ensure the scalability and accuracy of the conversions. We also illustrate CNN-Infer on a study case of node classification. We believe that CNN-Infer opens new research directions for understanding and analyzing GNNs. ACM Reference Format: Thanh-Dat Nguyen, Thanh Le-Cong, ThanhVu H. Nguyen, Xuan-Bach D. Le, and Quyet-Thang Huynh. 2022. Toward the Analysis of Graph Neural Networks. In New Ideas and Emerging Results (ICSE-NIER’22), May 21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3510455.3512780\",\"PeriodicalId\":416186,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510455.3512780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510455.3512780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图神经网络(gnn)最近作为表示和分析图结构数据的有效框架而出现。gnn已被应用于许多现实问题,如知识图谱分析、社交网络推荐,甚至COVID-19检测和疫苗开发。然而,与前馈神经网络(FFNNs)等其他深度神经网络不同,gnn的验证和属性推断技术很少。这可能是由于gnn的动态行为,它可以将任意图作为输入,而ffnn只能将固定大小的数值向量作为输入。本文提出了GNN-Infer,一种通过提取gnn的影响结构并将其转换为ffnn来分析和推断gnn属性的方法。这使我们能够利用现有强大的ffnn分析来获得原始gnn的结果。我们讨论了cnn - lnver的各种设计,以确保转换的可扩展性和准确性。我们还用一个节点分类的研究案例来说明CNN-Infer。我们相信CNN-Infer为理解和分析gnn开辟了新的研究方向。ACM参考格式:阮thanh - dat, Thanh Le-聪,Thanh vu H. Nguyen, Xuan-Bach D. Le, Quyet-Thang Huynh. 2022。论图神经网络的分析。新思想和新成果(ICSE-NIER ' 22), 2022年5月21-29日,美国宾夕法尼亚州匹兹堡。ACM,纽约,美国,5页。https://doi.org/10.1145/3510455.3512780
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward the Analysis of Graph Neural Networks
Graph Neural Networks (GNNs) have recently emerged as an effective framework for representing and analyzing graph-structured data. GNNs have been applied to many real-world problems such as knowledge graph analysis, social networks recommendation, and even COVID-19 detection and vaccine development. However, unlike other deep neural networks such as Feedforward Neural Networks (FFNNs), few verification and property inference techniques exist for GNNs. This is potentially due to dynamic behaviors of GNNs, which can take arbitrary graphs as input, whereas FFNNs which only take fixed size numerical vectors as inputs. This paper proposes GNN-Infer, an approach to analyze and infer properties of GNNs by extracting influential structures of the GNNs and then converting them into FFNNs. This allows us to leverage existing powerful FFNNs analyses to obtain results for the original GNNs. We discuss various designs of CNN-lnfer to ensure the scalability and accuracy of the conversions. We also illustrate CNN-Infer on a study case of node classification. We believe that CNN-Infer opens new research directions for understanding and analyzing GNNs. ACM Reference Format: Thanh-Dat Nguyen, Thanh Le-Cong, ThanhVu H. Nguyen, Xuan-Bach D. Le, and Quyet-Thang Huynh. 2022. Toward the Analysis of Graph Neural Networks. In New Ideas and Emerging Results (ICSE-NIER’22), May 21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3510455.3512780
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating User Perceptions of Conversational Agents for Software-related ExploratoryWeb Search Black Box Technique to Reduce Energy Consumption of Android Apps Utilizing Persistence for Post Facto Suppression of Invalid Anomalies Using System Logs Statistical Reasoning About Programs Title Page iii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1