{"title":"实时1080HD视频编码中H.264/AVC可变块大小运动估计的硬件设计","authors":"R. Porto, L. Agostini, S. Bampi","doi":"10.1109/ISVLSI.2009.11","DOIUrl":null,"url":null,"abstract":"Amongst the video compression standards, the latest one is the H.264/AVC. This standard reaches the highest compression rates when compared to the previous standards. On the other hand, it has a high computational complexity. This high computational complexity makes it difficult the development of software applications running in a current processor when high definitions videos are considered. Thus, hardware implementations become essential. Addressing the hardware architectures, this work presents the architectural design for the variable block size motion estimation (VBSME) defined in the H.264/AVC standard. This architecture is based on full search motion estimation algorithm and SAD calculation. This architecture is able to produce the 41 motion vectors within a macroblock as specified in the standard. The implementation of this architecture was based on standard cell methodology in 0.18μm CMOS technology. The architecture reached a throughput of 34 1080HD frames per second.","PeriodicalId":137508,"journal":{"name":"2009 IEEE Computer Society Annual Symposium on VLSI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Hardware Design of the H.264/AVC Variable Block Size Motion Estimation for Real-Time 1080HD Video Encoding\",\"authors\":\"R. Porto, L. Agostini, S. Bampi\",\"doi\":\"10.1109/ISVLSI.2009.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amongst the video compression standards, the latest one is the H.264/AVC. This standard reaches the highest compression rates when compared to the previous standards. On the other hand, it has a high computational complexity. This high computational complexity makes it difficult the development of software applications running in a current processor when high definitions videos are considered. Thus, hardware implementations become essential. Addressing the hardware architectures, this work presents the architectural design for the variable block size motion estimation (VBSME) defined in the H.264/AVC standard. This architecture is based on full search motion estimation algorithm and SAD calculation. This architecture is able to produce the 41 motion vectors within a macroblock as specified in the standard. The implementation of this architecture was based on standard cell methodology in 0.18μm CMOS technology. The architecture reached a throughput of 34 1080HD frames per second.\",\"PeriodicalId\":137508,\"journal\":{\"name\":\"2009 IEEE Computer Society Annual Symposium on VLSI\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Annual Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2009.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2009.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hardware Design of the H.264/AVC Variable Block Size Motion Estimation for Real-Time 1080HD Video Encoding
Amongst the video compression standards, the latest one is the H.264/AVC. This standard reaches the highest compression rates when compared to the previous standards. On the other hand, it has a high computational complexity. This high computational complexity makes it difficult the development of software applications running in a current processor when high definitions videos are considered. Thus, hardware implementations become essential. Addressing the hardware architectures, this work presents the architectural design for the variable block size motion estimation (VBSME) defined in the H.264/AVC standard. This architecture is based on full search motion estimation algorithm and SAD calculation. This architecture is able to produce the 41 motion vectors within a macroblock as specified in the standard. The implementation of this architecture was based on standard cell methodology in 0.18μm CMOS technology. The architecture reached a throughput of 34 1080HD frames per second.