用于复杂工程系统诊断的小波神经网络框架

G. Vachtsevanos, Peng Wang, J. Echauz
{"title":"用于复杂工程系统诊断的小波神经网络框架","authors":"G. Vachtsevanos, Peng Wang, J. Echauz","doi":"10.1109/ISIC.2001.971488","DOIUrl":null,"url":null,"abstract":"This paper introduces a new model-free diagnostic methodology to detect and identify machine failures and product defects. The basic module of the methodology is a novel multidimensional wavelet neural network construct used as the failure mode classifier. Validated sensor data are preprocessed and a vector of appropriate features is extracted. The feature vector becomes the input to the wavelet neural network which is trained off-line to map features to failure causes. An example is employed to illustrate the robustness and effectiveness of the proposed scheme.","PeriodicalId":367430,"journal":{"name":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A wavelet neural network framework for diagnostics of complex engineered systems\",\"authors\":\"G. Vachtsevanos, Peng Wang, J. Echauz\",\"doi\":\"10.1109/ISIC.2001.971488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new model-free diagnostic methodology to detect and identify machine failures and product defects. The basic module of the methodology is a novel multidimensional wavelet neural network construct used as the failure mode classifier. Validated sensor data are preprocessed and a vector of appropriate features is extracted. The feature vector becomes the input to the wavelet neural network which is trained off-line to map features to failure causes. An example is employed to illustrate the robustness and effectiveness of the proposed scheme.\",\"PeriodicalId\":367430,\"journal\":{\"name\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2001.971488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2001.971488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文介绍了一种新的无模型诊断方法来检测和识别机器故障和产品缺陷。该方法的基本模块是一种新的多维小波神经网络结构,用于故障模式分类器。对经过验证的传感器数据进行预处理,提取相应特征向量。特征向量成为小波神经网络的输入,小波神经网络离线训练,将特征映射到故障原因。通过算例验证了该方法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A wavelet neural network framework for diagnostics of complex engineered systems
This paper introduces a new model-free diagnostic methodology to detect and identify machine failures and product defects. The basic module of the methodology is a novel multidimensional wavelet neural network construct used as the failure mode classifier. Validated sensor data are preprocessed and a vector of appropriate features is extracted. The feature vector becomes the input to the wavelet neural network which is trained off-line to map features to failure causes. An example is employed to illustrate the robustness and effectiveness of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial neural networks as a biomass virtual sensor for a batch process Imitating the human immune system capabilities for multi-agent federation formation Fault diagnosis reasoning for set-membership approaches and application Asymptotic stability of fuzzy systems Synthesis of ladder diagrams from Petri nets controller models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1