{"title":"用于复杂工程系统诊断的小波神经网络框架","authors":"G. Vachtsevanos, Peng Wang, J. Echauz","doi":"10.1109/ISIC.2001.971488","DOIUrl":null,"url":null,"abstract":"This paper introduces a new model-free diagnostic methodology to detect and identify machine failures and product defects. The basic module of the methodology is a novel multidimensional wavelet neural network construct used as the failure mode classifier. Validated sensor data are preprocessed and a vector of appropriate features is extracted. The feature vector becomes the input to the wavelet neural network which is trained off-line to map features to failure causes. An example is employed to illustrate the robustness and effectiveness of the proposed scheme.","PeriodicalId":367430,"journal":{"name":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A wavelet neural network framework for diagnostics of complex engineered systems\",\"authors\":\"G. Vachtsevanos, Peng Wang, J. Echauz\",\"doi\":\"10.1109/ISIC.2001.971488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new model-free diagnostic methodology to detect and identify machine failures and product defects. The basic module of the methodology is a novel multidimensional wavelet neural network construct used as the failure mode classifier. Validated sensor data are preprocessed and a vector of appropriate features is extracted. The feature vector becomes the input to the wavelet neural network which is trained off-line to map features to failure causes. An example is employed to illustrate the robustness and effectiveness of the proposed scheme.\",\"PeriodicalId\":367430,\"journal\":{\"name\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2001.971488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2001.971488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A wavelet neural network framework for diagnostics of complex engineered systems
This paper introduces a new model-free diagnostic methodology to detect and identify machine failures and product defects. The basic module of the methodology is a novel multidimensional wavelet neural network construct used as the failure mode classifier. Validated sensor data are preprocessed and a vector of appropriate features is extracted. The feature vector becomes the input to the wavelet neural network which is trained off-line to map features to failure causes. An example is employed to illustrate the robustness and effectiveness of the proposed scheme.