基于纹理的HE染色组织图像分割算法改进

G. Windisch, M. Kozlovszky
{"title":"基于纹理的HE染色组织图像分割算法改进","authors":"G. Windisch, M. Kozlovszky","doi":"10.1109/CINTI.2013.6705205","DOIUrl":null,"url":null,"abstract":"Superpixel algorithms are becoming a widely used method for many computer vision applications, and it could be used as a basis of image segmentation for digital microscopy images of HE stained tissue samples. Research results show that among the many superpixel methods SLIC yields the best results when it comes to boundary adherence accuracy for normal images. In an effort to find out if it can be used for segmenting tissue images we have devised a benchmark to measure the performance of SLIC and tried improving the performance by careful tuning of the parameters to better fit SLIC to our special image processing needs.","PeriodicalId":439949,"journal":{"name":"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improvement of texture based image segmentation algorithm for HE stained tissue samples\",\"authors\":\"G. Windisch, M. Kozlovszky\",\"doi\":\"10.1109/CINTI.2013.6705205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superpixel algorithms are becoming a widely used method for many computer vision applications, and it could be used as a basis of image segmentation for digital microscopy images of HE stained tissue samples. Research results show that among the many superpixel methods SLIC yields the best results when it comes to boundary adherence accuracy for normal images. In an effort to find out if it can be used for segmenting tissue images we have devised a benchmark to measure the performance of SLIC and tried improving the performance by careful tuning of the parameters to better fit SLIC to our special image processing needs.\",\"PeriodicalId\":439949,\"journal\":{\"name\":\"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINTI.2013.6705205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI.2013.6705205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

超像素算法正成为许多计算机视觉应用中广泛使用的一种方法,它可以作为HE染色组织样本的数字显微镜图像分割的基础。研究结果表明,在众多的超像素方法中,SLIC在正常图像的边界附着精度方面取得了最好的效果。为了找出它是否可以用于分割组织图像,我们设计了一个基准来衡量SLIC的性能,并尝试通过仔细调整参数来提高性能,使SLIC更好地适应我们的特殊图像处理需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of texture based image segmentation algorithm for HE stained tissue samples
Superpixel algorithms are becoming a widely used method for many computer vision applications, and it could be used as a basis of image segmentation for digital microscopy images of HE stained tissue samples. Research results show that among the many superpixel methods SLIC yields the best results when it comes to boundary adherence accuracy for normal images. In an effort to find out if it can be used for segmenting tissue images we have devised a benchmark to measure the performance of SLIC and tried improving the performance by careful tuning of the parameters to better fit SLIC to our special image processing needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved centroid-index by Reviewing on centroid-index methods A predictive optimization method for energy-optimal speed profile generation for trains Fuzzy knowledge-based approach to diagnosis tasks in stochastic environment Long-term Electrical load forecasting based on economic and demographic data for Turkey Look-ahead cruise control considering road geometry and traffc flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1