基于多目标神经遗传杂交的基因表达规则发现

E. Keedwell, A. Narayanan
{"title":"基于多目标神经遗传杂交的基因表达规则发现","authors":"E. Keedwell, A. Narayanan","doi":"10.1109/BIBM.2010.5706646","DOIUrl":null,"url":null,"abstract":"Recent advances in microarray technology allow an unprecedented view of the biochemical mechanisms contained within a cell. Deriving useful information from the data is still proving to be a difficult task. In this paper a novel method based on a multi-objective genetic algorithm that discovers relevant sets of genes and uses a neural network to create rules using the evolved genes is described. This hybrid method is shown to work on four well-established gene expression datasets taken from the literature. The results indicate that the approach can return biologically intelligible as well as plausible results. The proposed method requires no pre-filtering or preselection of genes.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene expression rule discovery with a multi-objective neural-genetic hybrid\",\"authors\":\"E. Keedwell, A. Narayanan\",\"doi\":\"10.1109/BIBM.2010.5706646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in microarray technology allow an unprecedented view of the biochemical mechanisms contained within a cell. Deriving useful information from the data is still proving to be a difficult task. In this paper a novel method based on a multi-objective genetic algorithm that discovers relevant sets of genes and uses a neural network to create rules using the evolved genes is described. This hybrid method is shown to work on four well-established gene expression datasets taken from the literature. The results indicate that the approach can return biologically intelligible as well as plausible results. The proposed method requires no pre-filtering or preselection of genes.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微阵列技术的最新进展使人们对细胞内的生化机制有了前所未有的了解。从数据中得出有用的信息仍然是一项艰巨的任务。本文描述了一种基于多目标遗传算法的新方法,该方法发现相关的基因集,并利用进化的基因使用神经网络创建规则。这种混合方法被证明可以在从文献中提取的四个成熟的基因表达数据集上工作。结果表明,该方法可以返回生物学上可理解的结果以及可信的结果。该方法不需要预先过滤或预先选择基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene expression rule discovery with a multi-objective neural-genetic hybrid
Recent advances in microarray technology allow an unprecedented view of the biochemical mechanisms contained within a cell. Deriving useful information from the data is still proving to be a difficult task. In this paper a novel method based on a multi-objective genetic algorithm that discovers relevant sets of genes and uses a neural network to create rules using the evolved genes is described. This hybrid method is shown to work on four well-established gene expression datasets taken from the literature. The results indicate that the approach can return biologically intelligible as well as plausible results. The proposed method requires no pre-filtering or preselection of genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1