基于指数趋近律和改进超扭转算法的四旋翼无人机级联一、二阶滑模控制器

E. Paiva, M. Gomez-Redondo, J. Rodas, Y. Kali, M. Saad, R. Gregor, H. Fretes
{"title":"基于指数趋近律和改进超扭转算法的四旋翼无人机级联一、二阶滑模控制器","authors":"E. Paiva, M. Gomez-Redondo, J. Rodas, Y. Kali, M. Saad, R. Gregor, H. Fretes","doi":"10.1109/REDUAS47371.2019.8999711","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles have become a disruptive technology, which has experienced exponential growth in several applications. The control of these vehicles is a fairly wide area and the cascade PID controller is the most used in practice. However, this latter structure doesn’t ensure high performances in the presence of unmodelled dynamics, uncertainties and external abrupt disturbances. To that end, this work proposes a new method that consists of a non-linear cascade configuration of the variable structure control between first order sliding mode based on exponential reaching law and modified super-twisting second order sliding mode algorithm. The developed method is tested on simulation on a quadrotor system, the results obtained demonstrate good performance for trajectory tracking and as well as other non-linear controller options, it is robust against unmodeled dynamics and disturbances.","PeriodicalId":351115,"journal":{"name":"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cascade First and Second Order Sliding Mode Controller of a QuadRotor UAV based on Exponential Reaching Law and Modified Super-Twisting Algorithm\",\"authors\":\"E. Paiva, M. Gomez-Redondo, J. Rodas, Y. Kali, M. Saad, R. Gregor, H. Fretes\",\"doi\":\"10.1109/REDUAS47371.2019.8999711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicles have become a disruptive technology, which has experienced exponential growth in several applications. The control of these vehicles is a fairly wide area and the cascade PID controller is the most used in practice. However, this latter structure doesn’t ensure high performances in the presence of unmodelled dynamics, uncertainties and external abrupt disturbances. To that end, this work proposes a new method that consists of a non-linear cascade configuration of the variable structure control between first order sliding mode based on exponential reaching law and modified super-twisting second order sliding mode algorithm. The developed method is tested on simulation on a quadrotor system, the results obtained demonstrate good performance for trajectory tracking and as well as other non-linear controller options, it is robust against unmodeled dynamics and disturbances.\",\"PeriodicalId\":351115,\"journal\":{\"name\":\"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)\",\"volume\":\"204 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REDUAS47371.2019.8999711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REDUAS47371.2019.8999711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

无人驾驶飞行器已经成为一项颠覆性技术,在一些应用中经历了指数级增长。这类车辆的控制领域相当广泛,而串级PID控制器在实践中应用最多。然而,后一种结构在存在未建模动力学、不确定性和外部突变干扰的情况下不能保证高性能。为此,本文提出了一种基于指数趋近律的一阶滑模变结构控制的非线性串级结构与改进的超扭转二阶滑模算法相结合的新方法。在四旋翼飞行器上进行了仿真实验,结果表明该方法具有良好的轨迹跟踪性能和其他非线性控制器选项,对未建模的动力学和干扰具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cascade First and Second Order Sliding Mode Controller of a QuadRotor UAV based on Exponential Reaching Law and Modified Super-Twisting Algorithm
Unmanned aerial vehicles have become a disruptive technology, which has experienced exponential growth in several applications. The control of these vehicles is a fairly wide area and the cascade PID controller is the most used in practice. However, this latter structure doesn’t ensure high performances in the presence of unmodelled dynamics, uncertainties and external abrupt disturbances. To that end, this work proposes a new method that consists of a non-linear cascade configuration of the variable structure control between first order sliding mode based on exponential reaching law and modified super-twisting second order sliding mode algorithm. The developed method is tested on simulation on a quadrotor system, the results obtained demonstrate good performance for trajectory tracking and as well as other non-linear controller options, it is robust against unmodeled dynamics and disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Multi-Target Tracking with D-DBSCAN Clustering Cognitive Communication Scheme for Unmanned Aerial Vehicle Operation A Nonlinear Attitude Controller for Drones with CMG (Control Momentum Gyro) Decentralized Hybrid Flocking Guidance for a Swarm of Small UAVs RED UAS 2019 Keyword Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1