混合学习中活动内学习模式的一致性分析

Varshita Sher, M. Hatala, D. Gašević
{"title":"混合学习中活动内学习模式的一致性分析","authors":"Varshita Sher, M. Hatala, D. Gašević","doi":"10.1145/3375462.3375470","DOIUrl":null,"url":null,"abstract":"Performance and consistency play a large role in learning. This study analyzes the relation between consistency in students' online work habits and academic performance in a blended course. We utilize the data from logs recorded by a learning management system (LMS) in two information technology courses. The two courses required the completion of monthly asynchronous online discussion tasks and weekly assignments, respectively. We measure consistency by using Data Time Warping (DTW) distance for two successive tasks (assignments or discussions), as an appropriate measure to assess similarity of time series, over 11-day timeline starting 10 days before and up to the submission deadline. We found meaningful clusters of students exhibiting similar behavior and we use these to identify three distinct consistency patterns: highly consistent, incrementally consistent, and inconsistent users. We also found evidence of significant associations between these patterns and learner's academic performance.","PeriodicalId":355800,"journal":{"name":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Analyzing the consistency in within-activity learning patterns in blended learning\",\"authors\":\"Varshita Sher, M. Hatala, D. Gašević\",\"doi\":\"10.1145/3375462.3375470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance and consistency play a large role in learning. This study analyzes the relation between consistency in students' online work habits and academic performance in a blended course. We utilize the data from logs recorded by a learning management system (LMS) in two information technology courses. The two courses required the completion of monthly asynchronous online discussion tasks and weekly assignments, respectively. We measure consistency by using Data Time Warping (DTW) distance for two successive tasks (assignments or discussions), as an appropriate measure to assess similarity of time series, over 11-day timeline starting 10 days before and up to the submission deadline. We found meaningful clusters of students exhibiting similar behavior and we use these to identify three distinct consistency patterns: highly consistent, incrementally consistent, and inconsistent users. We also found evidence of significant associations between these patterns and learner's academic performance.\",\"PeriodicalId\":355800,\"journal\":{\"name\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375462.3375470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375462.3375470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

表现和一致性在学习中起着很大的作用。本研究分析了混合式课程中学生在线学习习惯的一致性与学习成绩的关系。我们利用学习管理系统(LMS)在两个信息技术课程中记录的日志数据。这两门课程分别要求学生完成每月的异步在线讨论任务和每周的作业。我们通过使用两个连续任务(作业或讨论)的数据时间扭曲(DTW)距离来衡量一致性,作为评估时间序列相似性的适当措施,从提交截止日期前10天开始的11天时间轴。我们发现有意义的学生群表现出相似的行为,我们用这些来识别三种不同的一致性模式:高度一致、增量一致和不一致的用户。我们还发现了这些模式与学习者的学习成绩之间存在显著关联的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing the consistency in within-activity learning patterns in blended learning
Performance and consistency play a large role in learning. This study analyzes the relation between consistency in students' online work habits and academic performance in a blended course. We utilize the data from logs recorded by a learning management system (LMS) in two information technology courses. The two courses required the completion of monthly asynchronous online discussion tasks and weekly assignments, respectively. We measure consistency by using Data Time Warping (DTW) distance for two successive tasks (assignments or discussions), as an appropriate measure to assess similarity of time series, over 11-day timeline starting 10 days before and up to the submission deadline. We found meaningful clusters of students exhibiting similar behavior and we use these to identify three distinct consistency patterns: highly consistent, incrementally consistent, and inconsistent users. We also found evidence of significant associations between these patterns and learner's academic performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How working memory capacity limits success in self-directed learning: a cognitive model of search and concept formation Quantifying data sensitivity: precise demonstration of care when building student prediction models Towards automated analysis of cognitive presence in MOOC discussions: a manual classification study Towards automatic cross-language classification of cognitive presence in online discussions What college students say, and what they do: aligning self-regulated learning theory with behavioral logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1