Justin K. Pugh, Skyler Goodell, Kenneth O. Stanley
{"title":"进化的多智能体团队中的定向通信","authors":"Justin K. Pugh, Skyler Goodell, Kenneth O. Stanley","doi":"10.1145/2576768.2598299","DOIUrl":null,"url":null,"abstract":"The question of how to best design a communication architecture is becoming increasingly important for evolving autonomous multiagent systems. Directional reception of signals, a design feature of communication that appears in most animals, is present in only some existing artificial communication systems. This paper hypothesizes that such directional reception benefits the evolution of communicating autonomous agents because it simplifies the language required to express positional information, which is critical to solving many group coordination tasks. This hypothesis is tested by comparing the evolutionary performance of several alternative communication architectures (both directional and non-directional) in a multiagent foraging domain designed to require a basic \"come here\" type of signal for the optimal solution. Results confirm that directional reception is a key ingredient in the evolutionary tractability of effective communication. Furthermore, the real world viability of directional reception is demonstrated through the successful transfer of the best evolved controllers to real robots. The conclusion is that directional reception is important to consider when designing communication architectures for more complicated tasks in the future.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Directional communication in evolved multiagent teams\",\"authors\":\"Justin K. Pugh, Skyler Goodell, Kenneth O. Stanley\",\"doi\":\"10.1145/2576768.2598299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The question of how to best design a communication architecture is becoming increasingly important for evolving autonomous multiagent systems. Directional reception of signals, a design feature of communication that appears in most animals, is present in only some existing artificial communication systems. This paper hypothesizes that such directional reception benefits the evolution of communicating autonomous agents because it simplifies the language required to express positional information, which is critical to solving many group coordination tasks. This hypothesis is tested by comparing the evolutionary performance of several alternative communication architectures (both directional and non-directional) in a multiagent foraging domain designed to require a basic \\\"come here\\\" type of signal for the optimal solution. Results confirm that directional reception is a key ingredient in the evolutionary tractability of effective communication. Furthermore, the real world viability of directional reception is demonstrated through the successful transfer of the best evolved controllers to real robots. The conclusion is that directional reception is important to consider when designing communication architectures for more complicated tasks in the future.\",\"PeriodicalId\":123241,\"journal\":{\"name\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2576768.2598299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Directional communication in evolved multiagent teams
The question of how to best design a communication architecture is becoming increasingly important for evolving autonomous multiagent systems. Directional reception of signals, a design feature of communication that appears in most animals, is present in only some existing artificial communication systems. This paper hypothesizes that such directional reception benefits the evolution of communicating autonomous agents because it simplifies the language required to express positional information, which is critical to solving many group coordination tasks. This hypothesis is tested by comparing the evolutionary performance of several alternative communication architectures (both directional and non-directional) in a multiagent foraging domain designed to require a basic "come here" type of signal for the optimal solution. Results confirm that directional reception is a key ingredient in the evolutionary tractability of effective communication. Furthermore, the real world viability of directional reception is demonstrated through the successful transfer of the best evolved controllers to real robots. The conclusion is that directional reception is important to consider when designing communication architectures for more complicated tasks in the future.