使用AlexNet迁移学习方法的视障人士禁止标志分类

Kefentse Motshoane, Chunling Tu, P. Owolawi
{"title":"使用AlexNet迁移学习方法的视障人士禁止标志分类","authors":"Kefentse Motshoane, Chunling Tu, P. Owolawi","doi":"10.1109/ICONIC.2018.8601274","DOIUrl":null,"url":null,"abstract":"Prohibition signs are commonly used for safety purposes in order to prevent and protect individuals from dangerous situations. These signs are placed in or around areas whereby they are clearly visible to the public. However, the visually impaired cannot visualize such signs. To help them, this paper proposes a system that combines Convolutional Neural Network (CNN) model and Computer Vision (CV) algorithms to detect and recognize prohibition signs in real scenes. The system uses pre-trained AlexNet model, fine-tuned using Prohibition Signage Boards (PSB) dataset and combined with Maximally Stable Extremal Regions (MSER) and Optical Character Recognition (OCR) techniques for text extraction and classification, to enhance the system performance. The experiments indicate that high recognition accuracies are achieved from a variety of prohibition images and prohibition texts.","PeriodicalId":277315,"journal":{"name":"2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prohibition Signage Classification for the Visually Impaired Using AlexNet Transfer Learning Approach\",\"authors\":\"Kefentse Motshoane, Chunling Tu, P. Owolawi\",\"doi\":\"10.1109/ICONIC.2018.8601274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prohibition signs are commonly used for safety purposes in order to prevent and protect individuals from dangerous situations. These signs are placed in or around areas whereby they are clearly visible to the public. However, the visually impaired cannot visualize such signs. To help them, this paper proposes a system that combines Convolutional Neural Network (CNN) model and Computer Vision (CV) algorithms to detect and recognize prohibition signs in real scenes. The system uses pre-trained AlexNet model, fine-tuned using Prohibition Signage Boards (PSB) dataset and combined with Maximally Stable Extremal Regions (MSER) and Optical Character Recognition (OCR) techniques for text extraction and classification, to enhance the system performance. The experiments indicate that high recognition accuracies are achieved from a variety of prohibition images and prohibition texts.\",\"PeriodicalId\":277315,\"journal\":{\"name\":\"2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIC.2018.8601274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIC.2018.8601274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

禁止标志通常用于安全目的,以防止和保护个人免受危险情况。这些标志放置在公众清晰可见的区域内或周围。然而,视障人士无法看到这些标志。为了帮助他们,本文提出了一种结合卷积神经网络(CNN)模型和计算机视觉(CV)算法的系统来检测和识别真实场景中的禁止标志。该系统使用预训练的AlexNet模型,使用禁止标牌(PSB)数据集进行微调,并结合最大稳定极值区域(MSER)和光学字符识别(OCR)技术进行文本提取和分类,以提高系统性能。实验结果表明,该方法对多种禁止图像和禁止文本的识别精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prohibition Signage Classification for the Visually Impaired Using AlexNet Transfer Learning Approach
Prohibition signs are commonly used for safety purposes in order to prevent and protect individuals from dangerous situations. These signs are placed in or around areas whereby they are clearly visible to the public. However, the visually impaired cannot visualize such signs. To help them, this paper proposes a system that combines Convolutional Neural Network (CNN) model and Computer Vision (CV) algorithms to detect and recognize prohibition signs in real scenes. The system uses pre-trained AlexNet model, fine-tuned using Prohibition Signage Boards (PSB) dataset and combined with Maximally Stable Extremal Regions (MSER) and Optical Character Recognition (OCR) techniques for text extraction and classification, to enhance the system performance. The experiments indicate that high recognition accuracies are achieved from a variety of prohibition images and prohibition texts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
M-Government Adoption Framework for Least Developed Countries: The Case of Malawi Rule-based Control Strategy for a River-based Grid-connected Hydrokinetic System A Survey on Spectrum Handoff Algorithm for Continuous Connectivity Services and Applications Security in IoT Enabled Networks Cloud Robotic Architectures: Directions for Future Research from a Comparative Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1