扩展SIFT检测多重对称性

Qian Chen, Haiyuan Wu, H. Taki
{"title":"扩展SIFT检测多重对称性","authors":"Qian Chen, Haiyuan Wu, H. Taki","doi":"10.1109/ACPR.2011.6166683","DOIUrl":null,"url":null,"abstract":"This paper describes an effective method for detecting multiple symmetric objects in an image. A “pseudo-affine invariant SIFT” is used for detecting symmetric feature pairs in perspective images. Candidates of symmetric axes are estimated from every two symmetric feature pairs, and the one supported by the most symmetric feature pairs is detected as the most relevant symmetric axis of a symmetric object. The symmetric feature pairs supporting the symmetric axis are then used to detect other symmetric axes in the same symmetric object. This procedure is applied repeatedly to the symmetric feature pairs after eliminating the ones that support the already detected symmetric axes to detect all symmetric objects in the image. The effectiveness of this method has been confirmed through several experiments using real images and common image databases.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting multiple symmetries with extended SIFT\",\"authors\":\"Qian Chen, Haiyuan Wu, H. Taki\",\"doi\":\"10.1109/ACPR.2011.6166683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an effective method for detecting multiple symmetric objects in an image. A “pseudo-affine invariant SIFT” is used for detecting symmetric feature pairs in perspective images. Candidates of symmetric axes are estimated from every two symmetric feature pairs, and the one supported by the most symmetric feature pairs is detected as the most relevant symmetric axis of a symmetric object. The symmetric feature pairs supporting the symmetric axis are then used to detect other symmetric axes in the same symmetric object. This procedure is applied repeatedly to the symmetric feature pairs after eliminating the ones that support the already detected symmetric axes to detect all symmetric objects in the image. The effectiveness of this method has been confirmed through several experiments using real images and common image databases.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种检测图像中多个对称物体的有效方法。采用“伪仿射不变SIFT”检测透视图像中的对称特征对。从每两个对称特征对中估计对称轴的候选轴,并将最对称特征对支持的候选轴检测为对称对象的最相关对称轴。然后使用支持对称轴的对称特征对来检测同一对称对象中的其他对称轴。在去除支持已检测到的对称轴的对称特征对后,对对称特征对重复应用此过程,以检测图像中所有对称对象。通过实际图像和常用图像数据库的实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting multiple symmetries with extended SIFT
This paper describes an effective method for detecting multiple symmetric objects in an image. A “pseudo-affine invariant SIFT” is used for detecting symmetric feature pairs in perspective images. Candidates of symmetric axes are estimated from every two symmetric feature pairs, and the one supported by the most symmetric feature pairs is detected as the most relevant symmetric axis of a symmetric object. The symmetric feature pairs supporting the symmetric axis are then used to detect other symmetric axes in the same symmetric object. This procedure is applied repeatedly to the symmetric feature pairs after eliminating the ones that support the already detected symmetric axes to detect all symmetric objects in the image. The effectiveness of this method has been confirmed through several experiments using real images and common image databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1