S. Al-Kiswany, Suli Yang, A. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
{"title":"NICE:网络集成集群高效存储","authors":"S. Al-Kiswany, Suli Yang, A. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau","doi":"10.1145/3078597.3078612","DOIUrl":null,"url":null,"abstract":"We present NICE, a key-value storage system design that leverages new software-defined network capabilities to build cluster-based network-efficient storage system. NICE presents novel techniques to co-design network routing and multicast with storage replication, consistency, and load balancing to achieve higher efficiency, performance, and scalability. We implement the NICEKV prototype. NICEKV follows the NICE approach in designing four essential network-centric storage mechanisms: request routing, replication, consistency, and load balancing. Our evaluation shows that the proposed approach brings significant performance gains compared to the current key-value systems design: up to 7× put/get performance improvement, up to 2× reduction in network load, 3× to 9× load reduction on the storage nodes, and the elimination of scalability bottlenecks present in current designs.","PeriodicalId":436194,"journal":{"name":"Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"NICE: Network-Integrated Cluster-Efficient Storage\",\"authors\":\"S. Al-Kiswany, Suli Yang, A. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau\",\"doi\":\"10.1145/3078597.3078612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present NICE, a key-value storage system design that leverages new software-defined network capabilities to build cluster-based network-efficient storage system. NICE presents novel techniques to co-design network routing and multicast with storage replication, consistency, and load balancing to achieve higher efficiency, performance, and scalability. We implement the NICEKV prototype. NICEKV follows the NICE approach in designing four essential network-centric storage mechanisms: request routing, replication, consistency, and load balancing. Our evaluation shows that the proposed approach brings significant performance gains compared to the current key-value systems design: up to 7× put/get performance improvement, up to 2× reduction in network load, 3× to 9× load reduction on the storage nodes, and the elimination of scalability bottlenecks present in current designs.\",\"PeriodicalId\":436194,\"journal\":{\"name\":\"Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078597.3078612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078597.3078612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present NICE, a key-value storage system design that leverages new software-defined network capabilities to build cluster-based network-efficient storage system. NICE presents novel techniques to co-design network routing and multicast with storage replication, consistency, and load balancing to achieve higher efficiency, performance, and scalability. We implement the NICEKV prototype. NICEKV follows the NICE approach in designing four essential network-centric storage mechanisms: request routing, replication, consistency, and load balancing. Our evaluation shows that the proposed approach brings significant performance gains compared to the current key-value systems design: up to 7× put/get performance improvement, up to 2× reduction in network load, 3× to 9× load reduction on the storage nodes, and the elimination of scalability bottlenecks present in current designs.