移动机器人的神经集成信息编码

D. Reyes, T. Baidyk, E. Kussul
{"title":"移动机器人的神经集成信息编码","authors":"D. Reyes, T. Baidyk, E. Kussul","doi":"10.1109/IJCNN.2011.6033307","DOIUrl":null,"url":null,"abstract":"For robot navigation (obstacle avoidance) we propose to use special neural network, because of its large information capacity for non correlated data. We prove this feature in contrast for correlated data in the robot task. This information is generated by a simulator and coded into neural ensembles. The coding method allows different parameters with their numeric values to be stored; it also provides similarity for close values and eliminates it in other case. The developed system combines the quality of the neural network as associative memory and the coding method to permit learning from some specific situations. So we prove the system introducing only the situation information and retrieving the appropriate maneuver for it.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Information coding with neural ensembles for a mobile robot\",\"authors\":\"D. Reyes, T. Baidyk, E. Kussul\",\"doi\":\"10.1109/IJCNN.2011.6033307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For robot navigation (obstacle avoidance) we propose to use special neural network, because of its large information capacity for non correlated data. We prove this feature in contrast for correlated data in the robot task. This information is generated by a simulator and coded into neural ensembles. The coding method allows different parameters with their numeric values to be stored; it also provides similarity for close values and eliminates it in other case. The developed system combines the quality of the neural network as associative memory and the coding method to permit learning from some specific situations. So we prove the system introducing only the situation information and retrieving the appropriate maneuver for it.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于机器人导航(避障),我们提出使用特殊的神经网络,因为它对非相关数据的信息量很大。我们用机器人任务中的相关数据对比证明了这一特征。这些信息由模拟器生成并编码到神经系统中。编码方法允许存储不同的参数及其数值;它还为接近的值提供相似性,并在其他情况下消除相似性。开发的系统结合了神经网络作为联想记忆的特性和编码方法,允许从某些特定情况中学习。因此,我们证明了该系统只引入态势信息并为其检索合适的机动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Information coding with neural ensembles for a mobile robot
For robot navigation (obstacle avoidance) we propose to use special neural network, because of its large information capacity for non correlated data. We prove this feature in contrast for correlated data in the robot task. This information is generated by a simulator and coded into neural ensembles. The coding method allows different parameters with their numeric values to be stored; it also provides similarity for close values and eliminates it in other case. The developed system combines the quality of the neural network as associative memory and the coding method to permit learning from some specific situations. So we prove the system introducing only the situation information and retrieving the appropriate maneuver for it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1