基于自回归模型和RUSBoost分类器集成的新型资产RUL预测

G. Fagogenis, D. Flynn, D. Lane
{"title":"基于自回归模型和RUSBoost分类器集成的新型资产RUL预测","authors":"G. Fagogenis, D. Flynn, D. Lane","doi":"10.1109/ICPHM.2014.7036373","DOIUrl":null,"url":null,"abstract":"This paper presents a novel, data-driven algorithm for the computation of the Remaining Useful Life (RUL) of an asset. The algorithm utilizes the asset's state history to learn a prognostic model from data. The prognostic model comprises an ensemble of Auto-Regressive (AR) models, together with a state-of-the-art classifier. The AR part of the algorithm is used to predict the system's state evolution. The classifier discriminates between healthy and faulty operation, given the asset's current state. The predicted state, as computed by the AR model, is fed to the classifier. The first time when the predicted state is classified as faulty is returned as the RUL of the system. The resulting prognostic algorithm was tested on the CMAPSS dataset as provided from NASA Ames Research Center. Cases of unknown future input trajectory as well as cases with multiple faults have been investigated.","PeriodicalId":376942,"journal":{"name":"2014 International Conference on Prognostics and Health Management","volume":"48 17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Novel RUL prediction of assets based on the integration of auto-regressive models and an RUSBoost classifier\",\"authors\":\"G. Fagogenis, D. Flynn, D. Lane\",\"doi\":\"10.1109/ICPHM.2014.7036373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel, data-driven algorithm for the computation of the Remaining Useful Life (RUL) of an asset. The algorithm utilizes the asset's state history to learn a prognostic model from data. The prognostic model comprises an ensemble of Auto-Regressive (AR) models, together with a state-of-the-art classifier. The AR part of the algorithm is used to predict the system's state evolution. The classifier discriminates between healthy and faulty operation, given the asset's current state. The predicted state, as computed by the AR model, is fed to the classifier. The first time when the predicted state is classified as faulty is returned as the RUL of the system. The resulting prognostic algorithm was tested on the CMAPSS dataset as provided from NASA Ames Research Center. Cases of unknown future input trajectory as well as cases with multiple faults have been investigated.\",\"PeriodicalId\":376942,\"journal\":{\"name\":\"2014 International Conference on Prognostics and Health Management\",\"volume\":\"48 17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Prognostics and Health Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2014.7036373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2014.7036373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种新的、数据驱动的资产剩余使用寿命(RUL)计算算法。该算法利用资产的状态历史从数据中学习预测模型。预测模型包括自回归(AR)模型的集合,以及最先进的分类器。算法的AR部分用于预测系统的状态演化。根据资产的当前状态,分类器可以区分正常操作和故障操作。由AR模型计算的预测状态被馈送到分类器。当预测状态被分类为故障时,将第一次作为系统的RUL返回。由此产生的预测算法在NASA艾姆斯研究中心提供的CMAPSS数据集上进行了测试。研究了未来输入轨迹未知和多故障的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel RUL prediction of assets based on the integration of auto-regressive models and an RUSBoost classifier
This paper presents a novel, data-driven algorithm for the computation of the Remaining Useful Life (RUL) of an asset. The algorithm utilizes the asset's state history to learn a prognostic model from data. The prognostic model comprises an ensemble of Auto-Regressive (AR) models, together with a state-of-the-art classifier. The AR part of the algorithm is used to predict the system's state evolution. The classifier discriminates between healthy and faulty operation, given the asset's current state. The predicted state, as computed by the AR model, is fed to the classifier. The first time when the predicted state is classified as faulty is returned as the RUL of the system. The resulting prognostic algorithm was tested on the CMAPSS dataset as provided from NASA Ames Research Center. Cases of unknown future input trajectory as well as cases with multiple faults have been investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection and classification for faults in drilling process using vibration analysis Prognostics model for tool life prediction in milling using texture features of surface image data Development of asset fault signatures for Prognostic and Health Management in the nuclear industry A model-based fault injection system for aerocraft wing structure Robust multivariate statistical ensembles for bearing fault detection and identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1