Marison C. Angeles, Bonaobra Paolo Luis V. Bonaobra, Dave Carlo S. Matibag, Marc Daniel N. Molina, Ricky D. Umali, M. Manuel, Jennifer C. Dela Cruz, Roderick C. Tud
{"title":"不同叶片材料对冰风机组性能影响的评价","authors":"Marison C. Angeles, Bonaobra Paolo Luis V. Bonaobra, Dave Carlo S. Matibag, Marc Daniel N. Molina, Ricky D. Umali, M. Manuel, Jennifer C. Dela Cruz, Roderick C. Tud","doi":"10.1109/I2CACIS52118.2021.9495906","DOIUrl":null,"url":null,"abstract":"A problem that the world faces, especially third world countries is the scarcity and expensiveness of electricity specifically the use of fossil fuel and its surging price. The world faces an era that is slowly degrading its atmosphere and where the carbon emissions are at its all-time high. The solution with renewable energy is not getting cheap to be able to apply these sources into poor rural areas. Icewind turbine is an example of how effective it is but the cost is too high. The focus of the study is to make a design that is cost efficient, can be installed anywhere, and able to supply power to rural roads and areas for adequate lighting. Icewind turbines are types of Vertical Axis Wind Turbines (VAWT) whose blades utilize a Savonius VAWT design. Icewind turbines are already applied in the country Iceland for telecom towers and residential applications such as homes, cabins, and farms. It is also applied in a bus stop located in Reykjavik Iceland as a power hub for Wi-Fi and charging. According to researchers, Icewind turbine is 28.4% more efficient than the typical Savonius Vertical Axis Wind turbine. This research aims to compare the effects of an Icewind Turbine using different materials namely; aluminum, 3D printer filament; Polyethylene terephthalate Glycol (PETG), and stainless steel by fabricating the blades. Using these materials, the researchers gathered data that will determine the best suitable material to fabricate the turbine design that will yield the best performance output and efficiency under the same conditions in three different situations. The materials gave different interpretation in regard to the situation they are under; stiffness and weight made a huge difference on its outcome. The results depended on what type of situation the turbine is. Nevertheless, aluminum blades are the most suitable and most ideal on any given environment.","PeriodicalId":210770,"journal":{"name":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of the Effects of Using Different Blade Material in the Performance of an Icewind Turbine\",\"authors\":\"Marison C. Angeles, Bonaobra Paolo Luis V. Bonaobra, Dave Carlo S. Matibag, Marc Daniel N. Molina, Ricky D. Umali, M. Manuel, Jennifer C. Dela Cruz, Roderick C. Tud\",\"doi\":\"10.1109/I2CACIS52118.2021.9495906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A problem that the world faces, especially third world countries is the scarcity and expensiveness of electricity specifically the use of fossil fuel and its surging price. The world faces an era that is slowly degrading its atmosphere and where the carbon emissions are at its all-time high. The solution with renewable energy is not getting cheap to be able to apply these sources into poor rural areas. Icewind turbine is an example of how effective it is but the cost is too high. The focus of the study is to make a design that is cost efficient, can be installed anywhere, and able to supply power to rural roads and areas for adequate lighting. Icewind turbines are types of Vertical Axis Wind Turbines (VAWT) whose blades utilize a Savonius VAWT design. Icewind turbines are already applied in the country Iceland for telecom towers and residential applications such as homes, cabins, and farms. It is also applied in a bus stop located in Reykjavik Iceland as a power hub for Wi-Fi and charging. According to researchers, Icewind turbine is 28.4% more efficient than the typical Savonius Vertical Axis Wind turbine. This research aims to compare the effects of an Icewind Turbine using different materials namely; aluminum, 3D printer filament; Polyethylene terephthalate Glycol (PETG), and stainless steel by fabricating the blades. Using these materials, the researchers gathered data that will determine the best suitable material to fabricate the turbine design that will yield the best performance output and efficiency under the same conditions in three different situations. The materials gave different interpretation in regard to the situation they are under; stiffness and weight made a huge difference on its outcome. The results depended on what type of situation the turbine is. Nevertheless, aluminum blades are the most suitable and most ideal on any given environment.\",\"PeriodicalId\":210770,\"journal\":{\"name\":\"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CACIS52118.2021.9495906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS52118.2021.9495906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of the Effects of Using Different Blade Material in the Performance of an Icewind Turbine
A problem that the world faces, especially third world countries is the scarcity and expensiveness of electricity specifically the use of fossil fuel and its surging price. The world faces an era that is slowly degrading its atmosphere and where the carbon emissions are at its all-time high. The solution with renewable energy is not getting cheap to be able to apply these sources into poor rural areas. Icewind turbine is an example of how effective it is but the cost is too high. The focus of the study is to make a design that is cost efficient, can be installed anywhere, and able to supply power to rural roads and areas for adequate lighting. Icewind turbines are types of Vertical Axis Wind Turbines (VAWT) whose blades utilize a Savonius VAWT design. Icewind turbines are already applied in the country Iceland for telecom towers and residential applications such as homes, cabins, and farms. It is also applied in a bus stop located in Reykjavik Iceland as a power hub for Wi-Fi and charging. According to researchers, Icewind turbine is 28.4% more efficient than the typical Savonius Vertical Axis Wind turbine. This research aims to compare the effects of an Icewind Turbine using different materials namely; aluminum, 3D printer filament; Polyethylene terephthalate Glycol (PETG), and stainless steel by fabricating the blades. Using these materials, the researchers gathered data that will determine the best suitable material to fabricate the turbine design that will yield the best performance output and efficiency under the same conditions in three different situations. The materials gave different interpretation in regard to the situation they are under; stiffness and weight made a huge difference on its outcome. The results depended on what type of situation the turbine is. Nevertheless, aluminum blades are the most suitable and most ideal on any given environment.