基于多利益相关者优化的个性化教育学习

Yong Zheng, Nastaran Ghane, Milad Sabouri
{"title":"基于多利益相关者优化的个性化教育学习","authors":"Yong Zheng, Nastaran Ghane, Milad Sabouri","doi":"10.1145/3314183.3323843","DOIUrl":null,"url":null,"abstract":"Recommender systems (RS) have been introduced to educations as an effective technology-enhanced learning technique. Traditional RS produce recommendations by considering the preferences of the end users only. Multi-stakeholder recommender systems (MSRS) claim that it is necessary to consider the utility of the items from the perspective of other stakeholders in order to balance the needs of multiple stakeholders. Take book recommendations for example, the utility of items from the view of parents, instructors and even publishers may be also important in addition to the student preferences. In this paper, we propose and exploit utility-based MSRS for personalized learning. Particularly, we attempt to address the challenge of over-/under-expectations in the utility-based MSRS. Our experimental results based on an educational data demonstrate the effectiveness of our proposed models and solutions.","PeriodicalId":240482,"journal":{"name":"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Personalized Educational Learning with Multi-Stakeholder Optimizations\",\"authors\":\"Yong Zheng, Nastaran Ghane, Milad Sabouri\",\"doi\":\"10.1145/3314183.3323843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems (RS) have been introduced to educations as an effective technology-enhanced learning technique. Traditional RS produce recommendations by considering the preferences of the end users only. Multi-stakeholder recommender systems (MSRS) claim that it is necessary to consider the utility of the items from the perspective of other stakeholders in order to balance the needs of multiple stakeholders. Take book recommendations for example, the utility of items from the view of parents, instructors and even publishers may be also important in addition to the student preferences. In this paper, we propose and exploit utility-based MSRS for personalized learning. Particularly, we attempt to address the challenge of over-/under-expectations in the utility-based MSRS. Our experimental results based on an educational data demonstrate the effectiveness of our proposed models and solutions.\",\"PeriodicalId\":240482,\"journal\":{\"name\":\"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"163 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3314183.3323843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314183.3323843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

推荐系统(RS)作为一种有效的技术增强学习技术已被引入教育领域。传统的RS仅通过考虑最终用户的偏好来产生建议。多利益相关者推荐系统(MSRS)认为,为了平衡多个利益相关者的需求,有必要从其他利益相关者的角度考虑项目的效用。以书籍推荐为例,除了学生的偏好外,家长、教师甚至出版商的观点也很重要。在本文中,我们提出并利用基于实用程序的MSRS进行个性化学习。特别是,我们试图解决基于实用程序的MSRS中过高/过低期望的挑战。基于一个教育数据的实验结果证明了我们所提出的模型和解决方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Personalized Educational Learning with Multi-Stakeholder Optimizations
Recommender systems (RS) have been introduced to educations as an effective technology-enhanced learning technique. Traditional RS produce recommendations by considering the preferences of the end users only. Multi-stakeholder recommender systems (MSRS) claim that it is necessary to consider the utility of the items from the perspective of other stakeholders in order to balance the needs of multiple stakeholders. Take book recommendations for example, the utility of items from the view of parents, instructors and even publishers may be also important in addition to the student preferences. In this paper, we propose and exploit utility-based MSRS for personalized learning. Particularly, we attempt to address the challenge of over-/under-expectations in the utility-based MSRS. Our experimental results based on an educational data demonstrate the effectiveness of our proposed models and solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shaping the Reaction: Community Characteristics and Emotional Tone of Citizen Responses to Robotics Videos at TED versus YouTube Supporting the Exploration of Cultural Heritage Information via Search Behavior Analysis Exer-model: A User Model for Scrutinising Long-term Models of Physical Activity from Multiple Sensors NEAR: A Partner to Explain Any Factorised Recommender System Tikkoun Sofrim: A WebApp for Personalization and Adaptation of Crowdsourcing Transcriptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1