利用LSTMs解码自然VR体验中的主观情绪唤醒

Simon M. Hofmann, Felix Klotzsche, A. Mariola, V. Nikulin, A. Villringer, Michael Gaebler
{"title":"利用LSTMs解码自然VR体验中的主观情绪唤醒","authors":"Simon M. Hofmann, Felix Klotzsche, A. Mariola, V. Nikulin, A. Villringer, Michael Gaebler","doi":"10.1109/AIVR.2018.00026","DOIUrl":null,"url":null,"abstract":"Emotional arousal (EA) denotes a heightened state of activation that has both subjective and physiological aspects. The neurophysiology of subjective EA, among other mind-brain-body phenomena, can best be tested when subjects are stimulated in a natural fashion. Immersive virtual reality (VR) enables naturalistic experimental stimulation and thus promises to increase the ecological validity of research findings i.e., how well they generalize to real-life settings. In this study, 45 participants experienced virtual rollercoaster rides while their brain activity was recorded using electroencephalography (EEG). A Long Short-Term Memory (LSTM) recurrent neural network (RNN) was then trained on the alpha-frequency (8-12 Hz) component of the EEG signal (input) and the retrospectively acquired continuous reports of subjective EA (target). With the LSTM-based model, subjective EA could be predicted significantly above chance level. This demonstrates a novel EEG-based decoding approach for subjective states of experience in naturalistic research designs using VR.","PeriodicalId":371868,"journal":{"name":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Decoding Subjective Emotional Arousal during a Naturalistic VR Experience from EEG Using LSTMs\",\"authors\":\"Simon M. Hofmann, Felix Klotzsche, A. Mariola, V. Nikulin, A. Villringer, Michael Gaebler\",\"doi\":\"10.1109/AIVR.2018.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotional arousal (EA) denotes a heightened state of activation that has both subjective and physiological aspects. The neurophysiology of subjective EA, among other mind-brain-body phenomena, can best be tested when subjects are stimulated in a natural fashion. Immersive virtual reality (VR) enables naturalistic experimental stimulation and thus promises to increase the ecological validity of research findings i.e., how well they generalize to real-life settings. In this study, 45 participants experienced virtual rollercoaster rides while their brain activity was recorded using electroencephalography (EEG). A Long Short-Term Memory (LSTM) recurrent neural network (RNN) was then trained on the alpha-frequency (8-12 Hz) component of the EEG signal (input) and the retrospectively acquired continuous reports of subjective EA (target). With the LSTM-based model, subjective EA could be predicted significantly above chance level. This demonstrates a novel EEG-based decoding approach for subjective states of experience in naturalistic research designs using VR.\",\"PeriodicalId\":371868,\"journal\":{\"name\":\"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIVR.2018.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR.2018.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

情绪觉醒(EA)是指一种具有主观和生理两方面的高度激活状态。当实验对象以自然的方式受到刺激时,主观EA的神经生理学,以及其他脑-脑-体现象,可以得到最好的测试。沉浸式虚拟现实(VR)实现了自然的实验刺激,从而有望提高研究结果的生态有效性,即它们在现实生活环境中的推广程度。在这项研究中,45名参与者体验了虚拟过山车,同时用脑电图(EEG)记录了他们的大脑活动。然后用脑电图信号的α频率(8-12 Hz)分量(输入)和回顾性获得的主观EA连续报告(目标)训练长短期记忆(LSTM)递归神经网络(RNN)。基于lstm模型的主观EA预测显著高于概率水平。这展示了一种新颖的基于脑电图的解码方法,用于使用VR的自然研究设计中的主观体验状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decoding Subjective Emotional Arousal during a Naturalistic VR Experience from EEG Using LSTMs
Emotional arousal (EA) denotes a heightened state of activation that has both subjective and physiological aspects. The neurophysiology of subjective EA, among other mind-brain-body phenomena, can best be tested when subjects are stimulated in a natural fashion. Immersive virtual reality (VR) enables naturalistic experimental stimulation and thus promises to increase the ecological validity of research findings i.e., how well they generalize to real-life settings. In this study, 45 participants experienced virtual rollercoaster rides while their brain activity was recorded using electroencephalography (EEG). A Long Short-Term Memory (LSTM) recurrent neural network (RNN) was then trained on the alpha-frequency (8-12 Hz) component of the EEG signal (input) and the retrospectively acquired continuous reports of subjective EA (target). With the LSTM-based model, subjective EA could be predicted significantly above chance level. This demonstrates a novel EEG-based decoding approach for subjective states of experience in naturalistic research designs using VR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Perceptual Evaluation of Generative Adversarial Network Real-Time Synthesized Drum Sounds in a Virtual Environment Virtual Crime Scene Understanding Head-Mounted Display FOV in Maritime Search and Rescue Object Detection [Publisher's information] A Combination of Feedback Control and Vision-Based Deep Learning Mechanism for Guiding Self-Driving Cars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1