广义无单元叠加大规模MIMO-OFDM系统的信道估计

Hanxiao Ge, Navneet Garg, T. Ratnarajah
{"title":"广义无单元叠加大规模MIMO-OFDM系统的信道估计","authors":"Hanxiao Ge, Navneet Garg, T. Ratnarajah","doi":"10.1109/spawc51304.2022.9833938","DOIUrl":null,"url":null,"abstract":"This paper proposes a generalized superimposed channel estimation scheme for uplink cell-free massive multiple-input multiple-output orthogonal frequency-division multiplexing (mMIMO-OFDM) system. We consider that some subcarriers transmit superimposed pilots and information symbols; others only carry information symbols, which is different from the standard OFDM system and reduce the pilot reused and enhanced spectral efficiency. The estimated channels are used to detect the data streams, and consequently, bit error rate (BER) and sum-rate performances are evaluated. This work considers two levels of receiver cooperations (centralized processing and local processing). We show that centralized processing provides much lower normalized mean-squared error (NMSE) and BER than that for local processing, and it is also shown that the generalized superimposed training scheme gives better performance in channel estimation compared with the conventional superimposed training (ST) and the regular pilots (RP) scheme.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Channel Estimation for Generalized Superimposed Cell-free Massive MIMO-OFDM Systems\",\"authors\":\"Hanxiao Ge, Navneet Garg, T. Ratnarajah\",\"doi\":\"10.1109/spawc51304.2022.9833938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a generalized superimposed channel estimation scheme for uplink cell-free massive multiple-input multiple-output orthogonal frequency-division multiplexing (mMIMO-OFDM) system. We consider that some subcarriers transmit superimposed pilots and information symbols; others only carry information symbols, which is different from the standard OFDM system and reduce the pilot reused and enhanced spectral efficiency. The estimated channels are used to detect the data streams, and consequently, bit error rate (BER) and sum-rate performances are evaluated. This work considers two levels of receiver cooperations (centralized processing and local processing). We show that centralized processing provides much lower normalized mean-squared error (NMSE) and BER than that for local processing, and it is also shown that the generalized superimposed training scheme gives better performance in channel estimation compared with the conventional superimposed training (ST) and the regular pilots (RP) scheme.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spawc51304.2022.9833938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9833938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种用于上行链路无小区大规模多输入多输出正交频分复用(mMIMO-OFDM)系统的广义叠加信道估计方案。我们认为有些子载波传输叠加的导频和信息符号;另一些只携带信息符号,这与标准OFDM系统不同,减少了导频复用,提高了频谱效率。估计的信道用于检测数据流,从而评估误码率(BER)和和率性能。这项工作考虑了两个层次的接收器合作(集中处理和本地处理)。结果表明,与局部处理相比,集中处理的归一化均方误差(NMSE)和误码率要低得多;与传统的叠加训练(ST)和常规导频(RP)方案相比,广义叠加训练方案在信道估计方面具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Channel Estimation for Generalized Superimposed Cell-free Massive MIMO-OFDM Systems
This paper proposes a generalized superimposed channel estimation scheme for uplink cell-free massive multiple-input multiple-output orthogonal frequency-division multiplexing (mMIMO-OFDM) system. We consider that some subcarriers transmit superimposed pilots and information symbols; others only carry information symbols, which is different from the standard OFDM system and reduce the pilot reused and enhanced spectral efficiency. The estimated channels are used to detect the data streams, and consequently, bit error rate (BER) and sum-rate performances are evaluated. This work considers two levels of receiver cooperations (centralized processing and local processing). We show that centralized processing provides much lower normalized mean-squared error (NMSE) and BER than that for local processing, and it is also shown that the generalized superimposed training scheme gives better performance in channel estimation compared with the conventional superimposed training (ST) and the regular pilots (RP) scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1