基于无记忆拟牛顿(MLQN)方法的地面探地雷达多参数全波形反演

E. Nilot, Xuan Feng, Yan Zhang, Minghe Zhang, Zejun Dong, Haoqiu Zhou, Xuebing Zhang
{"title":"基于无记忆拟牛顿(MLQN)方法的地面探地雷达多参数全波形反演","authors":"E. Nilot, Xuan Feng, Yan Zhang, Minghe Zhang, Zejun Dong, Haoqiu Zhou, Xuebing Zhang","doi":"10.1109/ICGPR.2018.8441534","DOIUrl":null,"url":null,"abstract":"Full waveform inversion (FWI) of ground penetrating radar (GPR) is a promising imaging tool for the detailed characterization of underground targets. In this study, on-ground GPR FWI is used to construct permittivity and conductivity variations of underground targets simultaneously. We applied memoryless quasi-Newton (MLQN) method to solve inverse problem of GPR. MLQN can attain acceptable results with low computational cost and small memory storage requirements. Numerical test is examined from on-ground multi-offset GPR data and the results show that our inversion strategies are feasible and reliable in simultaneous inversion of permittivity and conductivity from on-ground GPR data.","PeriodicalId":269482,"journal":{"name":"2018 17th International Conference on Ground Penetrating Radar (GPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multiparameter Full-waveform inversion of on-ground GPR using Memoryless quasi-Newton (MLQN) method\",\"authors\":\"E. Nilot, Xuan Feng, Yan Zhang, Minghe Zhang, Zejun Dong, Haoqiu Zhou, Xuebing Zhang\",\"doi\":\"10.1109/ICGPR.2018.8441534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Full waveform inversion (FWI) of ground penetrating radar (GPR) is a promising imaging tool for the detailed characterization of underground targets. In this study, on-ground GPR FWI is used to construct permittivity and conductivity variations of underground targets simultaneously. We applied memoryless quasi-Newton (MLQN) method to solve inverse problem of GPR. MLQN can attain acceptable results with low computational cost and small memory storage requirements. Numerical test is examined from on-ground multi-offset GPR data and the results show that our inversion strategies are feasible and reliable in simultaneous inversion of permittivity and conductivity from on-ground GPR data.\",\"PeriodicalId\":269482,\"journal\":{\"name\":\"2018 17th International Conference on Ground Penetrating Radar (GPR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th International Conference on Ground Penetrating Radar (GPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGPR.2018.8441534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th International Conference on Ground Penetrating Radar (GPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2018.8441534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

探地雷达全波形反演(FWI)是一种很有前途的地下目标精细表征成像工具。本研究利用地面探地雷达FWI同时构建地下目标的介电常数和电导率变化。应用无记忆拟牛顿(MLQN)方法求解探地雷达反问题。MLQN可以以较低的计算成本和较小的内存存储需求获得可接受的结果。利用地面多偏移距探地雷达数据进行了数值试验,结果表明,本文提出的反演策略在利用地面探地雷达数据同时反演介电常数和电导率方面是可行和可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiparameter Full-waveform inversion of on-ground GPR using Memoryless quasi-Newton (MLQN) method
Full waveform inversion (FWI) of ground penetrating radar (GPR) is a promising imaging tool for the detailed characterization of underground targets. In this study, on-ground GPR FWI is used to construct permittivity and conductivity variations of underground targets simultaneously. We applied memoryless quasi-Newton (MLQN) method to solve inverse problem of GPR. MLQN can attain acceptable results with low computational cost and small memory storage requirements. Numerical test is examined from on-ground multi-offset GPR data and the results show that our inversion strategies are feasible and reliable in simultaneous inversion of permittivity and conductivity from on-ground GPR data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high-stability dual-chip GPR for cooperative target probing Ice volume estimates of Swiss glaciers using helicopter-borne GPR — an example from the Glacier de la Plaine Morte Detection of Top Coal by Conductively-Guided Borehole Radar Waves: Results from Numerical Modelling Investigating karst cave sediments of unroofed caves with GPR, XRF and XRD Comparison of GPR and Capacitance Probe laboratory experiments in sandy soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1