任意输入大小卷积神经网络的自适应池化

H. Hsin, C. Su
{"title":"任意输入大小卷积神经网络的自适应池化","authors":"H. Hsin, C. Su","doi":"10.1109/ECICE52819.2021.9645730","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks have been widely used in deep learning recently. This paper presents an adaptive scheme to modify the input layers of the conventional convolutional neural networks such that images of arbitrary sizes can be directly input. Specifically, motivated by the advantage of content-aware image resizing, which takes the regions of interest into account for effective displaying on various screens with different dimensions and aspect ratios, it is beneficial to incorporate content-aware image resizing into convolutional neural networks. Experimental results show that image classification can be improved in terms of mean average precision.","PeriodicalId":176225,"journal":{"name":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Pooling for Convolutional Neural Networks with Arbitrary Input Sizes\",\"authors\":\"H. Hsin, C. Su\",\"doi\":\"10.1109/ECICE52819.2021.9645730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks have been widely used in deep learning recently. This paper presents an adaptive scheme to modify the input layers of the conventional convolutional neural networks such that images of arbitrary sizes can be directly input. Specifically, motivated by the advantage of content-aware image resizing, which takes the regions of interest into account for effective displaying on various screens with different dimensions and aspect ratios, it is beneficial to incorporate content-aware image resizing into convolutional neural networks. Experimental results show that image classification can be improved in terms of mean average precision.\",\"PeriodicalId\":176225,\"journal\":{\"name\":\"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECICE52819.2021.9645730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE52819.2021.9645730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,卷积神经网络在深度学习领域得到了广泛的应用。本文提出了一种自适应方案,对传统卷积神经网络的输入层进行修改,使任意大小的图像都可以直接输入。具体来说,由于内容感知图像调整大小的优势,它考虑了在不同尺寸和宽高比的各种屏幕上有效显示感兴趣的区域,因此将内容感知图像调整大小纳入卷积神经网络是有益的。实验结果表明,该方法可以提高图像分类的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Pooling for Convolutional Neural Networks with Arbitrary Input Sizes
Convolutional neural networks have been widely used in deep learning recently. This paper presents an adaptive scheme to modify the input layers of the conventional convolutional neural networks such that images of arbitrary sizes can be directly input. Specifically, motivated by the advantage of content-aware image resizing, which takes the regions of interest into account for effective displaying on various screens with different dimensions and aspect ratios, it is beneficial to incorporate content-aware image resizing into convolutional neural networks. Experimental results show that image classification can be improved in terms of mean average precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Demonstration of 128QAM-OFDM Encoded Terahertz Signals over 20-km SMF Evaluation of Learning Effectiveness Using Mobile Communication and Reality Technology to Assist Teaching: A Case of Island Ecological Teaching [ECICE 2021 Front matter] Application of Time-series Smoothed Excitation CNN Model Study on Humidity Status Fuzzy Estimation of Low-power PEMFC Stack Based on the Softsensing Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1