随机分解森林

Chun-Han Chien, Hwann-Tzong Chen
{"title":"随机分解森林","authors":"Chun-Han Chien, Hwann-Tzong Chen","doi":"10.1109/ACPR.2013.97","DOIUrl":null,"url":null,"abstract":"We present an effective image representation based on a new tree-structured coding technique called `random decomposition forests' (RDFs). Our method combines the merits of visual-word representations and random forests. The proposed RDF is able to decompose a local descriptor into multiple sets of visual words in a recursive and randomized manner. We show that, when combined with standard multiscale and spatial pooling strategies, the code vectors generated by RDF yield a powerful representation for image categorization. We are able to achieve state-of-the-art performance on several popular benchmark datasets.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Decomposition Forests\",\"authors\":\"Chun-Han Chien, Hwann-Tzong Chen\",\"doi\":\"10.1109/ACPR.2013.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an effective image representation based on a new tree-structured coding technique called `random decomposition forests' (RDFs). Our method combines the merits of visual-word representations and random forests. The proposed RDF is able to decompose a local descriptor into multiple sets of visual words in a recursive and randomized manner. We show that, when combined with standard multiscale and spatial pooling strategies, the code vectors generated by RDF yield a powerful representation for image categorization. We are able to achieve state-of-the-art performance on several popular benchmark datasets.\",\"PeriodicalId\":365633,\"journal\":{\"name\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2013.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种有效的图像表示基于一种新的树结构编码技术,称为“随机分解森林”(RDFs)。我们的方法结合了视觉词表示和随机森林的优点。所建议的RDF能够以递归和随机的方式将局部描述符分解为多个视觉词集。我们表明,当与标准的多尺度和空间池策略相结合时,RDF生成的代码向量产生了强大的图像分类表示。我们能够在几个流行的基准数据集上实现最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Random Decomposition Forests
We present an effective image representation based on a new tree-structured coding technique called `random decomposition forests' (RDFs). Our method combines the merits of visual-word representations and random forests. The proposed RDF is able to decompose a local descriptor into multiple sets of visual words in a recursive and randomized manner. We show that, when combined with standard multiscale and spatial pooling strategies, the code vectors generated by RDF yield a powerful representation for image categorization. We are able to achieve state-of-the-art performance on several popular benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Compensation of Radial Distortion by Minimizing Entropy of Histogram of Oriented Gradients A Robust and Efficient Minutia-Based Fingerprint Matching Algorithm Sclera Recognition - A Survey A Non-local Sparse Model for Intrinsic Images Classification Based on Boolean Algebra and Its Application to the Prediction of Recurrence of Liver Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1