不同压缩比下JPEG 2000图像的码流级安全识别

Kenta Iida, H. Kiya
{"title":"不同压缩比下JPEG 2000图像的码流级安全识别","authors":"Kenta Iida, H. Kiya","doi":"10.1109/APSIPA.2016.7820726","DOIUrl":null,"url":null,"abstract":"A secure identification scheme for JPEG 2000 code-streams is proposed in this paper. The aim is to securely identify JPEG 2000 images generated from the same original image, without decoding images. Features used for the identification are extracted from header parts in a JPEG 2000 codestream. The proposed scheme does not provide any false negative matches under various compression ratios, while most of image hashing-based schemes do not guarantee this performance. Existing identification schemes that do not provide any false negative matches can not be securely carried out. Due to such a situation, we propose an identification system based on a fuzzy commitment scheme, which is a well-known secure protocol for biometric template protection. Moreover, an error correction technique with 1-bit parity is considered to achieve the system. The experiment results show the proposed scheme is effective in terms of true positive matches, while keeping the security high.","PeriodicalId":409448,"journal":{"name":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Codestream level secure identification for JPEG 2000 images under various compression ratios\",\"authors\":\"Kenta Iida, H. Kiya\",\"doi\":\"10.1109/APSIPA.2016.7820726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A secure identification scheme for JPEG 2000 code-streams is proposed in this paper. The aim is to securely identify JPEG 2000 images generated from the same original image, without decoding images. Features used for the identification are extracted from header parts in a JPEG 2000 codestream. The proposed scheme does not provide any false negative matches under various compression ratios, while most of image hashing-based schemes do not guarantee this performance. Existing identification schemes that do not provide any false negative matches can not be securely carried out. Due to such a situation, we propose an identification system based on a fuzzy commitment scheme, which is a well-known secure protocol for biometric template protection. Moreover, an error correction technique with 1-bit parity is considered to achieve the system. The experiment results show the proposed scheme is effective in terms of true positive matches, while keeping the security high.\",\"PeriodicalId\":409448,\"journal\":{\"name\":\"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2016.7820726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2016.7820726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种针对jpeg2000码流的安全识别方案。目的是在不解码图像的情况下,安全地识别由相同原始图像生成的JPEG 2000图像。用于标识的特征是从JPEG 2000码流的标头部分提取出来的。该方案在各种压缩比下都不提供任何假负匹配,而大多数基于图像哈希的方案都不能保证这种性能。现有的不提供任何假阴性匹配的识别方案无法安全地进行。针对这种情况,我们提出了一种基于模糊承诺方案的识别系统,这是一种众所周知的生物特征模板保护安全协议。此外,还考虑了采用1位奇偶校验的纠错技术来实现该系统。实验结果表明,该方案在保证高安全性的同时,在真正匹配方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Codestream level secure identification for JPEG 2000 images under various compression ratios
A secure identification scheme for JPEG 2000 code-streams is proposed in this paper. The aim is to securely identify JPEG 2000 images generated from the same original image, without decoding images. Features used for the identification are extracted from header parts in a JPEG 2000 codestream. The proposed scheme does not provide any false negative matches under various compression ratios, while most of image hashing-based schemes do not guarantee this performance. Existing identification schemes that do not provide any false negative matches can not be securely carried out. Due to such a situation, we propose an identification system based on a fuzzy commitment scheme, which is a well-known secure protocol for biometric template protection. Moreover, an error correction technique with 1-bit parity is considered to achieve the system. The experiment results show the proposed scheme is effective in terms of true positive matches, while keeping the security high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bilateral hemiface feature representation learning for pose robust facial expression recognition Voice-pathology analysis based on AR-HMM Locality sensitive discriminant analysis for speaker verification On the training of DNN-based average voice model for speech synthesis A study on target feature activation and normalization and their impacts on the performance of DNN based speech dereverberation systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1