具有可扩展复杂度的双频散信道估计

M. Simko, C. Mehlführer, M. Wrulich, M. Rupp
{"title":"具有可扩展复杂度的双频散信道估计","authors":"M. Simko, C. Mehlführer, M. Wrulich, M. Rupp","doi":"10.1109/WSA.2010.5456443","DOIUrl":null,"url":null,"abstract":"In this paper, we present an Approximate Linear Minimum Mean Square Error (ALMMSE) fast fading channel estimator for Orthogonal Frequency Division Multiplexing (OFDM). The ALMMSE channel estimator utilizes the knowledge of the structure of the autocorrelation matrix given by the Kronecker product between the time correlation matrix and the frequency correlation matrix. We separate the Linear Minimum Mean Square Error (LMMSE) filtering matrix into two matrices corresponding to individual filtering in frequency and time. The eigenvalues of these two matrices are rank-one approximated by the eigenvalues of the LMMSE filtering matrix. The complexity of the ALMMSE estimator can be scaled by varying the number of the considered number of eigenvalues. Simulation results show that the proposed ALMMSE channel estimator looses only 0.1 dB compared to the LMMSE channel estimator in realistic scenarios.","PeriodicalId":311394,"journal":{"name":"2010 International ITG Workshop on Smart Antennas (WSA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Doubly dispersive channel estimation with scalable complexity\",\"authors\":\"M. Simko, C. Mehlführer, M. Wrulich, M. Rupp\",\"doi\":\"10.1109/WSA.2010.5456443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an Approximate Linear Minimum Mean Square Error (ALMMSE) fast fading channel estimator for Orthogonal Frequency Division Multiplexing (OFDM). The ALMMSE channel estimator utilizes the knowledge of the structure of the autocorrelation matrix given by the Kronecker product between the time correlation matrix and the frequency correlation matrix. We separate the Linear Minimum Mean Square Error (LMMSE) filtering matrix into two matrices corresponding to individual filtering in frequency and time. The eigenvalues of these two matrices are rank-one approximated by the eigenvalues of the LMMSE filtering matrix. The complexity of the ALMMSE estimator can be scaled by varying the number of the considered number of eigenvalues. Simulation results show that the proposed ALMMSE channel estimator looses only 0.1 dB compared to the LMMSE channel estimator in realistic scenarios.\",\"PeriodicalId\":311394,\"journal\":{\"name\":\"2010 International ITG Workshop on Smart Antennas (WSA)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International ITG Workshop on Smart Antennas (WSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSA.2010.5456443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International ITG Workshop on Smart Antennas (WSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSA.2010.5456443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

本文提出了一种近似线性最小均方误差(ALMMSE)的正交频分复用(OFDM)快速衰落信道估计方法。ALMMSE信道估计器利用了由时间相关矩阵和频率相关矩阵之间的Kronecker积给出的自相关矩阵的结构知识。我们将线性最小均方误差(LMMSE)滤波矩阵分离为两个矩阵,分别对应于频率和时间上的单独滤波。这两个矩阵的特征值由LMMSE滤波矩阵的特征值进行秩一逼近。ALMMSE估计器的复杂度可以通过改变所考虑的特征值的个数来缩放。仿真结果表明,在实际情况下,与LMMSE信道估计器相比,所提出的ALMMSE信道估计器的信道损失仅为0.1 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Doubly dispersive channel estimation with scalable complexity
In this paper, we present an Approximate Linear Minimum Mean Square Error (ALMMSE) fast fading channel estimator for Orthogonal Frequency Division Multiplexing (OFDM). The ALMMSE channel estimator utilizes the knowledge of the structure of the autocorrelation matrix given by the Kronecker product between the time correlation matrix and the frequency correlation matrix. We separate the Linear Minimum Mean Square Error (LMMSE) filtering matrix into two matrices corresponding to individual filtering in frequency and time. The eigenvalues of these two matrices are rank-one approximated by the eigenvalues of the LMMSE filtering matrix. The complexity of the ALMMSE estimator can be scaled by varying the number of the considered number of eigenvalues. Simulation results show that the proposed ALMMSE channel estimator looses only 0.1 dB compared to the LMMSE channel estimator in realistic scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-efficiency super-gain antenna arrays Order-recursive precoding for cooperative multi-point transmission Frequency prediction of the channel transfer function in multiple antenna systems Optimal MISO UWB pre-equalizer design with spectral mask constraints Synchronization aspects while using reciprocity for precoding in MIMO-OFDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1