Deborsi Basu, Abhishek Jain, Uttam Ghosh, R. Datta
{"title":"在支持vsdn的无人机网络上进行qos感知动态控制器植入,用于实时服务交付","authors":"Deborsi Basu, Abhishek Jain, Uttam Ghosh, R. Datta","doi":"10.1145/3477090.3481055","DOIUrl":null,"url":null,"abstract":"The advancement of wireless communication networks has been highly influenced by the development of UAV networks. The real-time realization and quick installation of UAV networks make it extremely suitable for emergency services. Due to limited energy and processing memory, vSDN-enabled UAV networks are brought into the picture where the central SDN controller is used to manage the Data Plane UAV activities. The placement of the controller is a critical issue due to random mobility and distant coverage. In this work, we have proposed a controller implantation technique for low latency communication and service delivery. A two-tier hierarchical data plane (D-plane) segmentation has been introduced to place the UAV entities at D-plane. Our algorithmic approach shows that the centralization of SDN controller causes comparatively low latency with respect to other potential regions. We have relaxed the traffic overheads considering minimal data exchange between D-plane and C-plane. The latency trade-off significantly helps to identify the most suitable positions to deploy the Controller units. This work also contributes towards the CPP-UAV (Controller Placement Problem in UAV-networks).","PeriodicalId":261033,"journal":{"name":"Proceedings of the 4th ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"QoS-aware dynamic controller implantation over vSDN-enabled UAV networks for real-time service delivery\",\"authors\":\"Deborsi Basu, Abhishek Jain, Uttam Ghosh, R. Datta\",\"doi\":\"10.1145/3477090.3481055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of wireless communication networks has been highly influenced by the development of UAV networks. The real-time realization and quick installation of UAV networks make it extremely suitable for emergency services. Due to limited energy and processing memory, vSDN-enabled UAV networks are brought into the picture where the central SDN controller is used to manage the Data Plane UAV activities. The placement of the controller is a critical issue due to random mobility and distant coverage. In this work, we have proposed a controller implantation technique for low latency communication and service delivery. A two-tier hierarchical data plane (D-plane) segmentation has been introduced to place the UAV entities at D-plane. Our algorithmic approach shows that the centralization of SDN controller causes comparatively low latency with respect to other potential regions. We have relaxed the traffic overheads considering minimal data exchange between D-plane and C-plane. The latency trade-off significantly helps to identify the most suitable positions to deploy the Controller units. This work also contributes towards the CPP-UAV (Controller Placement Problem in UAV-networks).\",\"PeriodicalId\":261033,\"journal\":{\"name\":\"Proceedings of the 4th ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3477090.3481055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477090.3481055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
QoS-aware dynamic controller implantation over vSDN-enabled UAV networks for real-time service delivery
The advancement of wireless communication networks has been highly influenced by the development of UAV networks. The real-time realization and quick installation of UAV networks make it extremely suitable for emergency services. Due to limited energy and processing memory, vSDN-enabled UAV networks are brought into the picture where the central SDN controller is used to manage the Data Plane UAV activities. The placement of the controller is a critical issue due to random mobility and distant coverage. In this work, we have proposed a controller implantation technique for low latency communication and service delivery. A two-tier hierarchical data plane (D-plane) segmentation has been introduced to place the UAV entities at D-plane. Our algorithmic approach shows that the centralization of SDN controller causes comparatively low latency with respect to other potential regions. We have relaxed the traffic overheads considering minimal data exchange between D-plane and C-plane. The latency trade-off significantly helps to identify the most suitable positions to deploy the Controller units. This work also contributes towards the CPP-UAV (Controller Placement Problem in UAV-networks).