{"title":"进化的混合社会:一维建模方法","authors":"M. Bodi, M. Szopek, Payam Zahadat, T. Schmickl","doi":"10.4108/EAI.3-12-2015.2262514","DOIUrl":null,"url":null,"abstract":"Natural self-organising collective systems like social insect societies are often used as a source of inspiration for robotic applications. In return, developing such self-organising robotic systems can lead to a better understanding of natural collective systems. By unifying the communication channels of the natural and artificial agents these two collective systems can be merged into one bio-hybrid society. In this work we demonstrate the feasibility of such a bio-hybid society by introducing a simple one-dimensional model. A set of patches forms a one-dimensional arena, each patch represents a stationary robot, which is controlled by an AHHS (Artificial Homeostatic Hormone System) control software. The stationary robots are able to produce different types of environmental stimuli. Simulated bees react diversely to the different stimuli types. An evolutionary computation algorithm changes the properties of the AHHS and defines the interactions between the robots and their properties of stimuli emission. The task is an aggregation of simulated bees at a predefined aggregation spot. We demonstrate that an evolved AHHS is a very feasible tool for controlling these stationary robots. Furthermore we show that an AHHS even works robustly in different setups and dynamic environments even though the controller was not specially evolved for these purposes.","PeriodicalId":415083,"journal":{"name":"International Conference on Bio-inspired Information and Communications Technologies","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolving Mixed Societies: A one-dimensional modelling approach\",\"authors\":\"M. Bodi, M. Szopek, Payam Zahadat, T. Schmickl\",\"doi\":\"10.4108/EAI.3-12-2015.2262514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural self-organising collective systems like social insect societies are often used as a source of inspiration for robotic applications. In return, developing such self-organising robotic systems can lead to a better understanding of natural collective systems. By unifying the communication channels of the natural and artificial agents these two collective systems can be merged into one bio-hybrid society. In this work we demonstrate the feasibility of such a bio-hybid society by introducing a simple one-dimensional model. A set of patches forms a one-dimensional arena, each patch represents a stationary robot, which is controlled by an AHHS (Artificial Homeostatic Hormone System) control software. The stationary robots are able to produce different types of environmental stimuli. Simulated bees react diversely to the different stimuli types. An evolutionary computation algorithm changes the properties of the AHHS and defines the interactions between the robots and their properties of stimuli emission. The task is an aggregation of simulated bees at a predefined aggregation spot. We demonstrate that an evolved AHHS is a very feasible tool for controlling these stationary robots. Furthermore we show that an AHHS even works robustly in different setups and dynamic environments even though the controller was not specially evolved for these purposes.\",\"PeriodicalId\":415083,\"journal\":{\"name\":\"International Conference on Bio-inspired Information and Communications Technologies\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Bio-inspired Information and Communications Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/EAI.3-12-2015.2262514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Bio-inspired Information and Communications Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.3-12-2015.2262514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolving Mixed Societies: A one-dimensional modelling approach
Natural self-organising collective systems like social insect societies are often used as a source of inspiration for robotic applications. In return, developing such self-organising robotic systems can lead to a better understanding of natural collective systems. By unifying the communication channels of the natural and artificial agents these two collective systems can be merged into one bio-hybrid society. In this work we demonstrate the feasibility of such a bio-hybid society by introducing a simple one-dimensional model. A set of patches forms a one-dimensional arena, each patch represents a stationary robot, which is controlled by an AHHS (Artificial Homeostatic Hormone System) control software. The stationary robots are able to produce different types of environmental stimuli. Simulated bees react diversely to the different stimuli types. An evolutionary computation algorithm changes the properties of the AHHS and defines the interactions between the robots and their properties of stimuli emission. The task is an aggregation of simulated bees at a predefined aggregation spot. We demonstrate that an evolved AHHS is a very feasible tool for controlling these stationary robots. Furthermore we show that an AHHS even works robustly in different setups and dynamic environments even though the controller was not specially evolved for these purposes.