Google的Audio Set数据库上的音频事件检测:使用不同类型的dnn的初步结果

Javier Darna-Sequeiros, D. Toledano
{"title":"Google的Audio Set数据库上的音频事件检测:使用不同类型的dnn的初步结果","authors":"Javier Darna-Sequeiros, D. Toledano","doi":"10.21437/iberspeech.2018-14","DOIUrl":null,"url":null,"abstract":"This paper focuses on the audio event detection problem, in particular on Google Audio Set, a database published in 2017 whose size and breadth are unprecedented for this problem. In order to explore the possibilities of this dataset, several classifiers based on different types of deep neural networks were designed, implemented and evaluated to check the impact of factors such as the architecture of the network, the number of layers and the codification of the data in the performance of the models. From all the classifiers tested, the LSTM neural network showed the best results with a mean average precision of 0.26652 and a mean recall of 0.30698. This result is particularly relevant since we use the embeddings provided by Google as input to the DNNs, which are sequences of at most 10 feature vectors and therefore limit the sequence modelling capabilities of LSTMs.","PeriodicalId":115963,"journal":{"name":"IberSPEECH Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Audio event detection on Google's Audio Set database: Preliminary results using different types of DNNs\",\"authors\":\"Javier Darna-Sequeiros, D. Toledano\",\"doi\":\"10.21437/iberspeech.2018-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the audio event detection problem, in particular on Google Audio Set, a database published in 2017 whose size and breadth are unprecedented for this problem. In order to explore the possibilities of this dataset, several classifiers based on different types of deep neural networks were designed, implemented and evaluated to check the impact of factors such as the architecture of the network, the number of layers and the codification of the data in the performance of the models. From all the classifiers tested, the LSTM neural network showed the best results with a mean average precision of 0.26652 and a mean recall of 0.30698. This result is particularly relevant since we use the embeddings provided by Google as input to the DNNs, which are sequences of at most 10 feature vectors and therefore limit the sequence modelling capabilities of LSTMs.\",\"PeriodicalId\":115963,\"journal\":{\"name\":\"IberSPEECH Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IberSPEECH Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/iberspeech.2018-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IberSPEECH Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/iberspeech.2018-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文重点研究音频事件检测问题,特别是2017年发布的Google audio Set数据库,其规模和广度在该问题上都是前所未有的。为了探索该数据集的可能性,基于不同类型的深度神经网络设计、实现和评估了几个分类器,以检查网络结构、层数和数据编码等因素对模型性能的影响。在所有被测试的分类器中,LSTM神经网络表现出最好的结果,平均精度为0.26652,平均召回率为0.30698。这个结果是特别相关的,因为我们使用谷歌提供的嵌入作为dnn的输入,dnn是最多10个特征向量的序列,因此限制了lstm的序列建模能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Audio event detection on Google's Audio Set database: Preliminary results using different types of DNNs
This paper focuses on the audio event detection problem, in particular on Google Audio Set, a database published in 2017 whose size and breadth are unprecedented for this problem. In order to explore the possibilities of this dataset, several classifiers based on different types of deep neural networks were designed, implemented and evaluated to check the impact of factors such as the architecture of the network, the number of layers and the codification of the data in the performance of the models. From all the classifiers tested, the LSTM neural network showed the best results with a mean average precision of 0.26652 and a mean recall of 0.30698. This result is particularly relevant since we use the embeddings provided by Google as input to the DNNs, which are sequences of at most 10 feature vectors and therefore limit the sequence modelling capabilities of LSTMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Recurrent Neural Network Approach to Audio Segmentation for Broadcast Domain Data The Intelligent Voice System for the IberSPEECH-RTVE 2018 Speaker Diarization Challenge AUDIAS-CEU: A Language-independent approach for the Query-by-Example Spoken Term Detection task of the Search on Speech ALBAYZIN 2018 evaluation The GTM-UVIGO System for Audiovisual Diarization Baseline Acoustic Models for Brazilian Portuguese Using Kaldi Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1