基于滑模观测器的锂离子电池充电状态优化自适应估计

Omid Rezaei, Mahyar Alinejad, Seyed Ashkan Nejati, B. Chong
{"title":"基于滑模观测器的锂离子电池充电状态优化自适应估计","authors":"Omid Rezaei, Mahyar Alinejad, Seyed Ashkan Nejati, B. Chong","doi":"10.1109/ICIAS49414.2021.9642675","DOIUrl":null,"url":null,"abstract":"As lithium-ion batteries have nonlinearities and also uncertainties in parameter identification in their dynamical model, accurate estimation of SoC requires robust and nonlinear estimators. Using a sliding mode observer, this paper presents an optimal adaptive estimator to measure the state of charge (SoC) of lithium-ion batteries (LIB). The conventional sliding mode observers have chattering phenomena and prolong convergence time in their performance, but the sliding mode observer proposed in this paper includes an adaptive gain which causes less chattering and convergence time. The simulation results and software in the loop (SIL) validation confirm the effectiveness of the proposed estimation method of SoC.","PeriodicalId":212635,"journal":{"name":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An optimized adaptive estimation of state of charge for Lithium-ion battery based on sliding mode observer for electric vehicle application\",\"authors\":\"Omid Rezaei, Mahyar Alinejad, Seyed Ashkan Nejati, B. Chong\",\"doi\":\"10.1109/ICIAS49414.2021.9642675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As lithium-ion batteries have nonlinearities and also uncertainties in parameter identification in their dynamical model, accurate estimation of SoC requires robust and nonlinear estimators. Using a sliding mode observer, this paper presents an optimal adaptive estimator to measure the state of charge (SoC) of lithium-ion batteries (LIB). The conventional sliding mode observers have chattering phenomena and prolong convergence time in their performance, but the sliding mode observer proposed in this paper includes an adaptive gain which causes less chattering and convergence time. The simulation results and software in the loop (SIL) validation confirm the effectiveness of the proposed estimation method of SoC.\",\"PeriodicalId\":212635,\"journal\":{\"name\":\"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS49414.2021.9642675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS49414.2021.9642675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于锂离子电池动力学模型中参数辨识具有非线性和不确定性,因此对电池荷电状态的准确估计需要具有鲁棒性和非线性的估计器。利用滑模观测器,提出了一种用于锂离子电池荷电状态(SoC)测量的最优自适应估计器。传统的滑模观测器在性能上存在抖振现象,且收敛时间较长,而本文提出的滑模观测器增加了自适应增益,减少了抖振和收敛时间。仿真结果和软件在环(SIL)验证验证了所提SoC估计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An optimized adaptive estimation of state of charge for Lithium-ion battery based on sliding mode observer for electric vehicle application
As lithium-ion batteries have nonlinearities and also uncertainties in parameter identification in their dynamical model, accurate estimation of SoC requires robust and nonlinear estimators. Using a sliding mode observer, this paper presents an optimal adaptive estimator to measure the state of charge (SoC) of lithium-ion batteries (LIB). The conventional sliding mode observers have chattering phenomena and prolong convergence time in their performance, but the sliding mode observer proposed in this paper includes an adaptive gain which causes less chattering and convergence time. The simulation results and software in the loop (SIL) validation confirm the effectiveness of the proposed estimation method of SoC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prospects and Techniques of Regenerative Current Breaking in DC Circuit Breaker Topology Fractional Stochastic Gradient Descent Based Learning Algorithm For Multi-layer Perceptron Neural Networks Domestic Electrical Energy Monitoring and Alerting Using SCADA and IoT Stochastic Approach for the Identification of Retinopathy of Prematurity Fault Classification and Location in Three-Phase Transmission Lines Using Wavelet-based Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1