基于神经网络的网络异常实时检测

Akshay Kotian, Sourabh Patil, Nikhil Prajapati, Y. Mane
{"title":"基于神经网络的网络异常实时检测","authors":"Akshay Kotian, Sourabh Patil, Nikhil Prajapati, Y. Mane","doi":"10.1109/ICSTCEE49637.2020.9276931","DOIUrl":null,"url":null,"abstract":"An Intrusion Detection System is model which monitors the network security from various type of Attacks. Intrusion Detection plays an important role in order to provide Network Security. In this paper we implement an Intrusion Detection System by building a Deep Learning Model using Feed Forward Neural Network (FFNN) and Long Short Term Memory Neural Network(LSTM). The study of model is based on Binary Classification and Multiclass Classification. The Model is implemented on Realtime Datasets or Dynamic Datasets. There is an comparative study between Feed Forward Neural Network and Long Short Term Memory Neural Network. The Intrusion Detection System(IDS) model improves the acccuracy and enlarge the further implementation for an Intrusion Detection Systems.","PeriodicalId":113845,"journal":{"name":"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Realtime Detection Of Network Anomalies Using Neural Network\",\"authors\":\"Akshay Kotian, Sourabh Patil, Nikhil Prajapati, Y. Mane\",\"doi\":\"10.1109/ICSTCEE49637.2020.9276931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Intrusion Detection System is model which monitors the network security from various type of Attacks. Intrusion Detection plays an important role in order to provide Network Security. In this paper we implement an Intrusion Detection System by building a Deep Learning Model using Feed Forward Neural Network (FFNN) and Long Short Term Memory Neural Network(LSTM). The study of model is based on Binary Classification and Multiclass Classification. The Model is implemented on Realtime Datasets or Dynamic Datasets. There is an comparative study between Feed Forward Neural Network and Long Short Term Memory Neural Network. The Intrusion Detection System(IDS) model improves the acccuracy and enlarge the further implementation for an Intrusion Detection Systems.\",\"PeriodicalId\":113845,\"journal\":{\"name\":\"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCEE49637.2020.9276931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCEE49637.2020.9276931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

入侵检测系统是一种监控网络安全免受各种攻击的模型。入侵检测在保证网络安全中起着重要的作用。本文利用前馈神经网络(FFNN)和长短期记忆神经网络(LSTM)构建深度学习模型,实现了入侵检测系统。模型的研究基于二值分类和多类分类。该模型在实时数据集或动态数据集上实现。对前馈神经网络和长短期记忆神经网络进行了比较研究。入侵检测系统(IDS)模型提高了入侵检测系统的准确性,扩大了入侵检测系统的进一步实现范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realtime Detection Of Network Anomalies Using Neural Network
An Intrusion Detection System is model which monitors the network security from various type of Attacks. Intrusion Detection plays an important role in order to provide Network Security. In this paper we implement an Intrusion Detection System by building a Deep Learning Model using Feed Forward Neural Network (FFNN) and Long Short Term Memory Neural Network(LSTM). The study of model is based on Binary Classification and Multiclass Classification. The Model is implemented on Realtime Datasets or Dynamic Datasets. There is an comparative study between Feed Forward Neural Network and Long Short Term Memory Neural Network. The Intrusion Detection System(IDS) model improves the acccuracy and enlarge the further implementation for an Intrusion Detection Systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flower Classification using Deep Learning models An Unprecedented PSO-PID Optimized Glucose Homeostasis Improving elasticity in cloud with predictive algorithms A Second Order-Second Order Generalized Integrator for Three - Phase Single – Stage Multifunctional Grid-Connected SPV System Continuous Compliance model for Hybrid Multi-Cloud through Self-Service Orchestrator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1