基于K-Means增强深度神经网络的缺失数据处理

Bin Yu, Chen Zhang, Z. Tang
{"title":"基于K-Means增强深度神经网络的缺失数据处理","authors":"Bin Yu, Chen Zhang, Z. Tang","doi":"10.1145/3318299.3318391","DOIUrl":null,"url":null,"abstract":"This paper proposes a neural network model based on K-means to process the problem of data missing. The method first clusters the samples according to the attributes without missing values to get several clusters, and then puts these clusters into different neural networks to predict the missing values. In this paper, the data can be divided into two types: the continuous numerical type and the discrete numerical type. At the same time, corresponding neural network models are established for these two types. We conduct experiments on the dataset called Human Development Index and Its Components, showing our method to be feasible and superior.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Missing Data Processing Based on Deep Neural Network Enhanced by K-Means\",\"authors\":\"Bin Yu, Chen Zhang, Z. Tang\",\"doi\":\"10.1145/3318299.3318391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a neural network model based on K-means to process the problem of data missing. The method first clusters the samples according to the attributes without missing values to get several clusters, and then puts these clusters into different neural networks to predict the missing values. In this paper, the data can be divided into two types: the continuous numerical type and the discrete numerical type. At the same time, corresponding neural network models are established for these two types. We conduct experiments on the dataset called Human Development Index and Its Components, showing our method to be feasible and superior.\",\"PeriodicalId\":164987,\"journal\":{\"name\":\"International Conference on Machine Learning and Computing\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318299.3318391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于K-means的神经网络模型来处理数据缺失问题。该方法首先根据无缺失值的属性对样本进行聚类,得到多个聚类,然后将这些聚类放入不同的神经网络中进行缺失值预测。本文将数据分为连续数值型和离散数值型两种类型。同时,针对这两种类型建立了相应的神经网络模型。我们在名为“人类发展指数及其组成部分”的数据集上进行了实验,证明了我们的方法是可行的和优越的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Missing Data Processing Based on Deep Neural Network Enhanced by K-Means
This paper proposes a neural network model based on K-means to process the problem of data missing. The method first clusters the samples according to the attributes without missing values to get several clusters, and then puts these clusters into different neural networks to predict the missing values. In this paper, the data can be divided into two types: the continuous numerical type and the discrete numerical type. At the same time, corresponding neural network models are established for these two types. We conduct experiments on the dataset called Human Development Index and Its Components, showing our method to be feasible and superior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Competition for Multilayer Network Community Detection Power Load Forecasting Using a Refined LSTM Research on the Application of Big Data Management in Enterprise Management Decision-making and Execution Literature Review A Flexible Approach for Human Activity Recognition Based on Broad Learning System Decentralized Adaptive Latency-Aware Cloud-Edge-Dew Architecture for Unreliable Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1