对触发水隙导致电气击穿的机制进行调查

Mohsen Saniei, S. J. MacGreggor, R. Fouracre
{"title":"对触发水隙导致电气击穿的机制进行调查","authors":"Mohsen Saniei, S. J. MacGreggor, R. Fouracre","doi":"10.1109/CEIDP.2003.1254958","DOIUrl":null,"url":null,"abstract":"The breakdown of a triggered, plane-parallel electrode system with water dielectric has been investigated. The gap was triggered by a discharge initiated at an electrically isolated trigger pin, positioned in the center of one of the electrodes, using a 500 ns voltage pulse. A 5000 fps CCD-camera monitored events occurring in the gap during such a discharge and the intensity variations of a laser beam transmitted through the electrode gap was also monitored. The results indicate the initiation, expansion and collapse of a gas bubble generated at the trigger electrode. The subsequent application of a voltage between the plane electrodes results in the complete breakdown of the gap due to the trigger discharge. The effect of a delay time between the trigger pulse and the application of the main gap voltage was consistent with the growth and collapse of the trigger-initiated bubble.","PeriodicalId":306575,"journal":{"name":"2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of the mechanisms leading to the electrical breakdown of a triggered water gaps\",\"authors\":\"Mohsen Saniei, S. J. MacGreggor, R. Fouracre\",\"doi\":\"10.1109/CEIDP.2003.1254958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The breakdown of a triggered, plane-parallel electrode system with water dielectric has been investigated. The gap was triggered by a discharge initiated at an electrically isolated trigger pin, positioned in the center of one of the electrodes, using a 500 ns voltage pulse. A 5000 fps CCD-camera monitored events occurring in the gap during such a discharge and the intensity variations of a laser beam transmitted through the electrode gap was also monitored. The results indicate the initiation, expansion and collapse of a gas bubble generated at the trigger electrode. The subsequent application of a voltage between the plane electrodes results in the complete breakdown of the gap due to the trigger discharge. The effect of a delay time between the trigger pulse and the application of the main gap voltage was consistent with the growth and collapse of the trigger-initiated bubble.\",\"PeriodicalId\":306575,\"journal\":{\"name\":\"2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIDP.2003.1254958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2003.1254958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了一种具有水介质的触发平面平行电极系统的击穿问题。该间隙是由位于其中一个电极中心的电隔离触发引脚触发的放电触发的,使用500ns电压脉冲。在放电过程中,一台5000fps的ccd摄像机监测了电极间隙中发生的事件,并监测了通过电极间隙传输的激光束的强度变化。结果显示了在触发电极处产生的气泡的起爆、膨胀和破裂。随后在平面电极之间施加电压,由于触发放电导致间隙完全击穿。触发脉冲与施加主间隙电压之间的延迟时间的影响与触发触发气泡的生长和破裂一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the mechanisms leading to the electrical breakdown of a triggered water gaps
The breakdown of a triggered, plane-parallel electrode system with water dielectric has been investigated. The gap was triggered by a discharge initiated at an electrically isolated trigger pin, positioned in the center of one of the electrodes, using a 500 ns voltage pulse. A 5000 fps CCD-camera monitored events occurring in the gap during such a discharge and the intensity variations of a laser beam transmitted through the electrode gap was also monitored. The results indicate the initiation, expansion and collapse of a gas bubble generated at the trigger electrode. The subsequent application of a voltage between the plane electrodes results in the complete breakdown of the gap due to the trigger discharge. The effect of a delay time between the trigger pulse and the application of the main gap voltage was consistent with the growth and collapse of the trigger-initiated bubble.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The effect of temperature and the mutual influence between two cavities of on the appearance of partial discharges in gaseous cavities contained in the insulator of high voltage Breakdown strength at the interface between epoxy resin and silicone rubber Surface change of polyamide nanocomposite caused by partial discharges Surface finish effects on partial discharge with embedded electrodes Roles of cumyl alcohol and crosslinked structure in homo-charge trapping in crosslinked polyethylene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1