DensER:基于激光雷达的全场景上采样的密度不平衡简化表示

Tso-Yuan Chen, Ching-Chun Hsiao, Wen-Huang Cheng, Hong-Han Shuai, Peter Chen, Ching-Chun Huang
{"title":"DensER:基于激光雷达的全场景上采样的密度不平衡简化表示","authors":"Tso-Yuan Chen, Ching-Chun Hsiao, Wen-Huang Cheng, Hong-Han Shuai, Peter Chen, Ching-Chun Huang","doi":"10.1109/VCIP53242.2021.9675334","DOIUrl":null,"url":null,"abstract":"With the development of depth sensors, 3D point cloud upsampling that generates a high-resolution point cloud given a sparse input becomes emergent. However, many previous works focused on single 3D object reconstruction and refinement. Although a few recent works began to discuss 3D structure refine-ment for a more complex scene, they do not target LiDAR-based point clouds, which have density imbalance issues from near to far. This paper proposed DensER, a Density-imbalance-Eased regional Representation. Notably, to learn robust representations and model local geometry under imbalance point density, we designed density-aware multiple receptive fields to extract the regional features. Moreover, founded on the patch reoccurrence property of a nature scene, we proposed a density-aided attentive module to enrich the extracted features of point-sparse areas by referring to other non-local regions. Finally, by coupling with novel manifold-based upsamplers, DensER shows the ability to super-resolve LiDAR-based whole-scene point clouds. The exper-imental results show DensER outperforms related works both in qualitative and quantitative evaluation. We also demonstrate that the enhanced point clouds can improve downstream tasks such as 3D object detection and depth completion.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DensER: Density-imbalance-Eased Representation for LiDAR-based Whole Scene Upsampling\",\"authors\":\"Tso-Yuan Chen, Ching-Chun Hsiao, Wen-Huang Cheng, Hong-Han Shuai, Peter Chen, Ching-Chun Huang\",\"doi\":\"10.1109/VCIP53242.2021.9675334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of depth sensors, 3D point cloud upsampling that generates a high-resolution point cloud given a sparse input becomes emergent. However, many previous works focused on single 3D object reconstruction and refinement. Although a few recent works began to discuss 3D structure refine-ment for a more complex scene, they do not target LiDAR-based point clouds, which have density imbalance issues from near to far. This paper proposed DensER, a Density-imbalance-Eased regional Representation. Notably, to learn robust representations and model local geometry under imbalance point density, we designed density-aware multiple receptive fields to extract the regional features. Moreover, founded on the patch reoccurrence property of a nature scene, we proposed a density-aided attentive module to enrich the extracted features of point-sparse areas by referring to other non-local regions. Finally, by coupling with novel manifold-based upsamplers, DensER shows the ability to super-resolve LiDAR-based whole-scene point clouds. The exper-imental results show DensER outperforms related works both in qualitative and quantitative evaluation. We also demonstrate that the enhanced point clouds can improve downstream tasks such as 3D object detection and depth completion.\",\"PeriodicalId\":114062,\"journal\":{\"name\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP53242.2021.9675334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着深度传感器的发展,在稀疏输入条件下生成高分辨率点云的三维点云上采样技术应运而生。然而,许多先前的工作集中在单个3D对象的重建和细化。尽管最近的一些工作开始讨论更复杂场景的3D结构优化,但他们并没有针对基于lidar的点云,这些点云具有从近到远的密度不平衡问题。本文提出了密度-不平衡-简化区域表示。此外,基于自然场景的斑块重现特性,我们提出了一种密度辅助关注模块,通过参考其他非局部区域来丰富点稀疏区域的提取特征。最后,通过与新型的基于流形的上采样器相结合,DensER显示了超分辨基于激光雷达的全场景点云的能力。实验结果表明,DensER在定性和定量评价方面都优于相关作品。我们还证明了增强的点云可以改善下游任务,如3D目标检测和深度完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DensER: Density-imbalance-Eased Representation for LiDAR-based Whole Scene Upsampling
With the development of depth sensors, 3D point cloud upsampling that generates a high-resolution point cloud given a sparse input becomes emergent. However, many previous works focused on single 3D object reconstruction and refinement. Although a few recent works began to discuss 3D structure refine-ment for a more complex scene, they do not target LiDAR-based point clouds, which have density imbalance issues from near to far. This paper proposed DensER, a Density-imbalance-Eased regional Representation. Notably, to learn robust representations and model local geometry under imbalance point density, we designed density-aware multiple receptive fields to extract the regional features. Moreover, founded on the patch reoccurrence property of a nature scene, we proposed a density-aided attentive module to enrich the extracted features of point-sparse areas by referring to other non-local regions. Finally, by coupling with novel manifold-based upsamplers, DensER shows the ability to super-resolve LiDAR-based whole-scene point clouds. The exper-imental results show DensER outperforms related works both in qualitative and quantitative evaluation. We also demonstrate that the enhanced point clouds can improve downstream tasks such as 3D object detection and depth completion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Seq-Masks: Bridging the gap between appearance and gait modeling for video-based person re-identification Deep Metric Learning for Human Action Recognition with SlowFast Networks LRS-Net: invisible QR Code embedding, detection, and restoration Deep Color Constancy Using Spatio-Temporal Correlation of High-Speed Video Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1