Qiang Zhang, Zhenwei Xie, L. Du, Peng Shi, Xiaocong Yuan
{"title":"光学手性多层中的布洛赫型光子粒子","authors":"Qiang Zhang, Zhenwei Xie, L. Du, Peng Shi, Xiaocong Yuan","doi":"10.1103/PhysRevResearch.3.023109","DOIUrl":null,"url":null,"abstract":"Magnetic skyrmions are topological quasiparticles in magnetic field. Until recently, as one of their photonic counterparts, N\\'eel-type photonic skyrmion is discovered in surface plasmon polaritons. The deep-subwavelength features of the photonic skyrmions suggest their potentials in quantum technologies and data storage. So far, the Bloch-type photonic skyrmion has yet to be demonstrated in this brand new research field. Here, by exploiting the quantum spin Hall effect of a plasmonic optical vortex in multilayered structure, we predict the existence of photonic twisted-N\\'eel- and Bloch-type skyrmions in chiral materials. Their chirality-dependent features can be considered as additional degrees-of-freedom for future chiral sensing, information processing and storage technologies. In particular, our findings enlarge the family of photonic skyrmions and reveal a remarkable resemblance of the feature of chiral materials in two seemingly distant fields: photonic skyrmions and magnetic skyrmions.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Bloch-type photonic skyrmions in optical chiral multilayers\",\"authors\":\"Qiang Zhang, Zhenwei Xie, L. Du, Peng Shi, Xiaocong Yuan\",\"doi\":\"10.1103/PhysRevResearch.3.023109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic skyrmions are topological quasiparticles in magnetic field. Until recently, as one of their photonic counterparts, N\\\\'eel-type photonic skyrmion is discovered in surface plasmon polaritons. The deep-subwavelength features of the photonic skyrmions suggest their potentials in quantum technologies and data storage. So far, the Bloch-type photonic skyrmion has yet to be demonstrated in this brand new research field. Here, by exploiting the quantum spin Hall effect of a plasmonic optical vortex in multilayered structure, we predict the existence of photonic twisted-N\\\\'eel- and Bloch-type skyrmions in chiral materials. Their chirality-dependent features can be considered as additional degrees-of-freedom for future chiral sensing, information processing and storage technologies. In particular, our findings enlarge the family of photonic skyrmions and reveal a remarkable resemblance of the feature of chiral materials in two seemingly distant fields: photonic skyrmions and magnetic skyrmions.\",\"PeriodicalId\":304443,\"journal\":{\"name\":\"arXiv: Optics\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevResearch.3.023109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevResearch.3.023109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bloch-type photonic skyrmions in optical chiral multilayers
Magnetic skyrmions are topological quasiparticles in magnetic field. Until recently, as one of their photonic counterparts, N\'eel-type photonic skyrmion is discovered in surface plasmon polaritons. The deep-subwavelength features of the photonic skyrmions suggest their potentials in quantum technologies and data storage. So far, the Bloch-type photonic skyrmion has yet to be demonstrated in this brand new research field. Here, by exploiting the quantum spin Hall effect of a plasmonic optical vortex in multilayered structure, we predict the existence of photonic twisted-N\'eel- and Bloch-type skyrmions in chiral materials. Their chirality-dependent features can be considered as additional degrees-of-freedom for future chiral sensing, information processing and storage technologies. In particular, our findings enlarge the family of photonic skyrmions and reveal a remarkable resemblance of the feature of chiral materials in two seemingly distant fields: photonic skyrmions and magnetic skyrmions.