加速GPU实现contourlet变换

Majid Mohrekesh, Shekoofeh Azizi, S. Samavi
{"title":"加速GPU实现contourlet变换","authors":"Majid Mohrekesh, Shekoofeh Azizi, S. Samavi","doi":"10.1109/IRANIANMVIP.2013.6780005","DOIUrl":null,"url":null,"abstract":"The widespread usage of the contourlet-transform (CT) and today's real-time needs demand faster execution of CT. Solutions are available, but due to lack of portability or computational intensity, they are disadvantageous in real-time applications. In this paper we take advantage of modern GPUs for the acceleration purpose. GPU is well-suited to address data-parallel computation applications such as CT. The convolution part of CT, which is the most computational intensive step, is reshaped for parallel processing. Then the whole transform is transported into GPU to avoid multiple time consuming migrations between the host and device. Experimental results show that with existing GPUs, CT execution achieves more than 19x speedup as compared to its non-parallel CPU-based method. It takes approximately 40ms to compute the transform of a 512×512 image, which should be sufficient for real-time applications.","PeriodicalId":297204,"journal":{"name":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","volume":"18 789 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating GPU implementation of contourlet transform\",\"authors\":\"Majid Mohrekesh, Shekoofeh Azizi, S. Samavi\",\"doi\":\"10.1109/IRANIANMVIP.2013.6780005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread usage of the contourlet-transform (CT) and today's real-time needs demand faster execution of CT. Solutions are available, but due to lack of portability or computational intensity, they are disadvantageous in real-time applications. In this paper we take advantage of modern GPUs for the acceleration purpose. GPU is well-suited to address data-parallel computation applications such as CT. The convolution part of CT, which is the most computational intensive step, is reshaped for parallel processing. Then the whole transform is transported into GPU to avoid multiple time consuming migrations between the host and device. Experimental results show that with existing GPUs, CT execution achieves more than 19x speedup as compared to its non-parallel CPU-based method. It takes approximately 40ms to compute the transform of a 512×512 image, which should be sufficient for real-time applications.\",\"PeriodicalId\":297204,\"journal\":{\"name\":\"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"18 789 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANMVIP.2013.6780005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2013.6780005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

轮廓变换(contourlet-transform, CT)的广泛应用和当今的实时性需求要求CT的执行速度更快。解决方案是可用的,但由于缺乏可移植性或计算强度,它们在实时应用中是不利的。在本文中,我们利用现代gpu的加速目的。GPU非常适合处理数据并行计算应用,如CT。CT的卷积部分是计算量最大的步骤,它被重构为并行处理。然后将整个变换传输到GPU中,避免了主机和设备之间多次耗时的迁移。实验结果表明,在现有的gpu上,CT的执行速度比基于非并行cpu的方法提高了19倍以上。计算512×512图像的变换大约需要40毫秒,这对于实时应用程序来说应该足够了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating GPU implementation of contourlet transform
The widespread usage of the contourlet-transform (CT) and today's real-time needs demand faster execution of CT. Solutions are available, but due to lack of portability or computational intensity, they are disadvantageous in real-time applications. In this paper we take advantage of modern GPUs for the acceleration purpose. GPU is well-suited to address data-parallel computation applications such as CT. The convolution part of CT, which is the most computational intensive step, is reshaped for parallel processing. Then the whole transform is transported into GPU to avoid multiple time consuming migrations between the host and device. Experimental results show that with existing GPUs, CT execution achieves more than 19x speedup as compared to its non-parallel CPU-based method. It takes approximately 40ms to compute the transform of a 512×512 image, which should be sufficient for real-time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated lung CT image segmentation using kernel mean shift analysis A simple and efficient approach for 3D model decomposition MRI image reconstruction via new K-space sampling scheme based on separable transform Fusion of SPECT and MRI images using back and fore ground information Real time occlusion handling using Kalman Filter and mean-shift
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1